Volume 51 Issue 2
Feb.  2022
Turn off MathJax
Article Contents

Lin Suying, Liao Xiaojie, Han Bing. Nanosecond laser-induced periodic structures on polyimide film[J]. Infrared and Laser Engineering, 2022, 51(2): 20210911. doi: 10.3788/IRLA20210911
Citation: Lin Suying, Liao Xiaojie, Han Bing. Nanosecond laser-induced periodic structures on polyimide film[J]. Infrared and Laser Engineering, 2022, 51(2): 20210911. doi: 10.3788/IRLA20210911

Nanosecond laser-induced periodic structures on polyimide film

doi: 10.3788/IRLA20210911
  • Received Date: 2021-11-26
  • Rev Recd Date: 2022-01-25
  • Available Online: 2022-03-04
  • Publish Date: 2022-02-28
  • Laser-induced periodic surface structures (LIPSS) were created by a 355 nm linearly polarized laser with the pulse duration of 7 ns and the pulse repetition rate of 1 Hz on polyimide films. The influences of different laser parameters on the morphology of the formed LIPSS were investigated. It is found that there is a certain fluence threshold and pulse number threshold for the generation of periodic structure. When the laser fluence is in the range of 54-586 mJ/cm², and the pulse number is between 1-50, the well-ordered LIPSS are formed with the periods between 4-6.65 μm. The pulse number and the laser fluence are changed in the experiment. With the same laser fluence, increasing the pulse number, or with the same pulse number, increasing the laser fluence, the period of the ripples can be increased. It is also observed that the formation of LIPSS is accompanied by the removal of materials, with the increase of the pulse number, the depth of the crater increases, and LIPSS can continue to appear at the bottom of the crater. In addition, in order to analyze the possible causes of the formation of periodic structure, the physical state of the material is discussed by establishing the heat conduction model when the periodic structure is formed. These works provide potential support for studying the improvement of material surface wettability, friction mechanics, and optical properties.
  • [1] Li Chen, Stoian Razvan, Cheng Guanghua. Laser-induced periodic surface structures with ultrashort laser pulse [J]. Chinese Optics, 2018, 11(1): 1-17. (in Chinese) doi:  10.3788/co.20181101.0001
    [2] Zhang Jiaru, Guan Yingchun. Surface functional microstructure of biomedical materials prepared by ultrafast laser: A review [J]. Chinese Optics, 2019, 12(2): 199-213. (in Chinese) doi:  10.3788/co.20191202.0199
    [3] Wang Feiyue, Zou Tingting, Xin Wei, et al. Control of the wettability of graphene oxide surface with femtosecond laser irradiation (Invited) [J]. Infrared and Laser Engineering, 2020, 49(12): 20201064. (in Chinese) doi:  10.3788/IRLA20201064
    [4] Trtica M S, Gakovic B M, Radak B B, et al. Material surface modification by ns, ps and fs laser pulses [J]. Optics and Precision Engineering, 2011, 19(19): 221-227. (in Chinese)
    [5] Birnbaum M. Semiconductor surface damage produced by ruby lasers [J]. Appl Phys, 1965, 36: 3688-3689. doi:  10.1063/1.1703071
    [6] Gao Yufan, Yu Caiyun, Han Bing, et al. Picosecond laser-induced periodic surface structures (LIPSS) on crystalline silicont [J]. Surfaces and Interfaces, 2020, 19: 100538. doi:  10.1016/j.surfin.2020.100538
    [7] Zhang Chengyun, Liu Haiying, Man Wenqing, et al. Femtosecond laser induced surface micro-and nano-structures by orthogonal scanning processing [J]. Optics and Precision Engineering, 2017, 25(12): 3063-3069. (in Chinese) doi:  10.3788/OPE.20172512.3063
    [8] Li Zhiming, Wang Xi, Nie Jinsong, et al. High frequency femtosecond laser induced periodic spatial structure on silicon surface [J]. Infrared and Laser Engineering, 2018, 47(1): 0106003. (in Chinese) doi:  10.3788/IRLA201847.0106003
    [9] Barb R A, Hrelescu C, Dong L. Laser-induced periodic surface structures on polymers for formation of gold nanowires and activation of human cells polymers for formation of gold nanowires and activation of human cells [J]. Appl Phys A, 2014, 117(1): 295-300. doi:  10.1007/s00339-013-8219-9
    [10] Yada S, Terakawa M. Femtosecond laser induced periodic surface structure on poly-L-lactic acid [J]. Optics Express, 2015, 23(5): 5694-5703. doi:  10.1364/OE.23.005694
    [11] Esther Rebollar, Marta Castillejo, Tiberio A Ezquerra. Laser induced periodic surface structureson polymer films: From fundamentals to applications [J]. European Polymer Journal, 2015, 73: 162-174. doi:  10.1016/j.eurpolymj.2015.10.012
    [12] Mezera M, Bonse J, Rmer G. Influence of bulk temperature on laser induced periodic surface structures on polycarbonate [J]. Polymers, 2019, 11(12): 1947. doi:  10.3390/polym11121947
    [13] Mezera M, Alamri S, Hendriks W. Hierarchical micro-/nano-structures on polycarbonate via UV pulsed laser processing [J]. Nanomaterials, 2020, 10(6): 1184.
    [14] Varlamova O, Reif J, Varlamov S, et al. Self-organized Surface Patterns Originating from Laser-Induced Instability[M]. Cham, Switzerland: Springer International Publishing, 2015.
    [15] Bonse J, Grf S. Maxwell meets marangoni— A review of theories on laser induced periodic surface structures [J]. Laser Photonics Reviews, 2020, 14(10): 2000215. doi:  10.1002/lpor.202000215
    [16] Jing Cui, Aurora Nogales, Tiberio A Ezquerra. Influence of substrate and film thickness on polymer LIPSS formation [J]. Applied Surface Science, 2017, 394(2): 125-131.
    [17] Csete M, Marti O, Bor Z. Laser-induced periodic surface structures on different poly-carbonate films [J]. Applied Physics A, 2001, 73(4): 521-526. doi:  10.1007/s003390100973
    [18] Stephan G, Clemens K, Frank M. Formation and properties of laser-induced periodic surface structures on different glasses [J]. Materials, 2017, 10(8): 399.
    [19] Qian Renyuan, Yu Yansheng. Transition of polymer from highly elastic state to fluid state [J]. Chemical Bulletin, 2008, 71(3): 164-171. (in Chinese)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)  / Tables(1)

Article Metrics

Article views(219) PDF downloads(51) Cited by()

Related
Proportional views

Nanosecond laser-induced periodic structures on polyimide film

doi: 10.3788/IRLA20210911
  • School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract: Laser-induced periodic surface structures (LIPSS) were created by a 355 nm linearly polarized laser with the pulse duration of 7 ns and the pulse repetition rate of 1 Hz on polyimide films. The influences of different laser parameters on the morphology of the formed LIPSS were investigated. It is found that there is a certain fluence threshold and pulse number threshold for the generation of periodic structure. When the laser fluence is in the range of 54-586 mJ/cm², and the pulse number is between 1-50, the well-ordered LIPSS are formed with the periods between 4-6.65 μm. The pulse number and the laser fluence are changed in the experiment. With the same laser fluence, increasing the pulse number, or with the same pulse number, increasing the laser fluence, the period of the ripples can be increased. It is also observed that the formation of LIPSS is accompanied by the removal of materials, with the increase of the pulse number, the depth of the crater increases, and LIPSS can continue to appear at the bottom of the crater. In addition, in order to analyze the possible causes of the formation of periodic structure, the physical state of the material is discussed by establishing the heat conduction model when the periodic structure is formed. These works provide potential support for studying the improvement of material surface wettability, friction mechanics, and optical properties.

    • 在利用激光对材料表面进行改性与加工的过程中,人们发现了一种特殊的周期性结构,称为激光诱导表面周期性结构(LIPSS),它能在一定的激光能量密度和脉冲个数下产生,并出现在金属、半导体、电介质等几乎一切物质上[1]。利用它能够改善材料表面的诸多性能,例如摩擦特性、润湿特性、生物相容性以及一些光学特性[2-4]。区别于常规加工技术,激光提供了一种快速、非接触、精确和清洁的表面处理技术,故有其值得探究的地方。

      近几年来,关于激光诱导材料表面产生周期性结构的研究日益增多,尤其是自1965年,M.Birnbaum首次报道了经过红宝石激光束照射在抛光锗单晶表面形成LIPSS后[5],关于在金属、半导体[6-8]上制备LIPSS的研究,引发了科研人员的广泛兴趣。与金属、半导体相比,关于聚合物的报道相对有限,尽管如此,R.-A.Barb和C.Hrelescu等人在具有LIPSS的聚合物材料上培养了生物细胞,描述了LIPSS在排列和激活培养人类细胞的潜在应用[9]。Shuhei Yada等人在可生物降解的支架聚合物上成功制备了LIPSS,拓展了激光加工在组织工程领域中制备高生物相容性支架的潜力[10]。E.Rebollar在聚合物的周期性结构上施加少量的金,获得的拉曼光谱的增强效应约为未处理的聚合物表面的10倍[11]。研究人员发现,在聚合物上制备这种周期性结构是具有实际意义的。而文中的实验对象聚酰亚胺(PI),更是常用作于液晶分子的基底材料,在PI上制备周期性条纹结构,为液晶的取向技术提供了新的潜在方法。

      由于大部分聚合物对紫外光的吸收率较高,经紫外光的辐照容易激发自由基,导致分子链的断裂,影响材料在力学、光学等方面的性能,故大部分利用光对聚合物进行表面改性的实验都在紫外波段进行[12-13]。文中首次利用波长为355 nm的纳秒激光器在聚酰亚胺薄膜上制备了微米量级的周期性条纹结构,研究条纹周期与激光参数的关系,包括激光的能量密度、脉冲个数对条纹周期的影响,并探究周期性结构的产生机理。

    • 研究使用的激光器波长为355 nm、脉宽7 ns、重复频率1 Hz。实验光路如图1所示。激光器出射的激光经过半波片与偏振分光棱镜后,通过一个焦距f = 50 mm的凸透镜和f = −25 mm的凹透镜聚焦到材料表面。所有光学元器件的中心共轴,其中,凹透镜与凸透镜的组合起到了缩束的作用,减小光斑面积,增大到靶的能量密度,比起使用单个凸透镜进行会聚,该组合系统焦距更长,能量密度变化缓慢,能够更精确地确定LIPSS出现的阈值,半波片和偏振分光棱镜的组合实现了能量的调节。

      Figure 1.  Sketch for experimental set up

      实验样品采用的是厚度为30 μm的聚酰亚胺薄膜,将样品置于三维平移台上,通过改变到靶激光能量密度找寻能够产生LIPSS图样的能量密度阈值。同时,在不改变到靶能量密度的情况下,改变到靶的脉冲个数N,当N = 1、3、5、9、15、20、30、40、50时,观察表面周期性条纹的变化。实验使用原子力显微镜(AFM )对材料进行扫描,获得表面形貌。

    • 通过实验可知,周期性条纹结构的出现存在明显的激光能量密度阈值与脉冲个数的阈值。图2为不同能量密度、脉冲个数下表面形貌分类图,其中,黄色部分为尚未出现LIPSS的区域,灰色部分代表薄膜被烧蚀穿透。当能量密度小于45 mJ/cm2时,材料表面有明显的响应,粗糙度发生了一定的变化,出现了随机分布的点状结构,但并未观察到LIPSS的产生,能量密度低于LIPSS的产生阈值。即使不断增大脉冲个数,使得材料表面出现明显的烧蚀坑直至烧透,也并未观察到条纹结构,如图3(a)所示。同时,在能量密度阈值临界处,脉冲个数过小时也没有观察到明显的周期性条纹结构。实验最终找到了能够在实验室光学显微镜下清晰观测到的LIPSS图样的最佳激光能量密度范围约为54~586 mJ/cm2,如图3(b)所示。继续增大激光的能量密度,表面形貌开始变得扭曲,又进入了一种无序的状态。而随着脉冲个数的增大,烧蚀坑的深度逐渐加深,但周期性结构始终没有随着材料的烧蚀进一步的熔融,可以存在于数十微米以下的烧蚀坑底部,如图3(c)所示。

      Figure 2.  Classification of surface morphology under different fluence and pulse number

      图4(a)是在能量密度345 mJ/cm2 时在显微镜下观测到有明显的烧蚀坑并存在周期性条纹结构的图样,在显微镜下测得该点处LIPSS的周期为4.38 μm。用AFM对实验结果进行扫描,结果见图4(b),图4(c)是图4(b)白线位置的AFM纵向截面图,可以看到该位置处的条纹深度与周期情况,得到该点处LIPSS的周期为4.42 μm。同时,对图4(a)做二维傅里叶变换,得到侧视图见图4(d),横坐标代表波数,纵坐标表示幅值,图中在波数 2.27×105处出现峰值,周期为频率的倒数可以得到此时LIPSS的周期为4.40 μm,使用多种手段对LIPSS的周期进行测量对比,得到的结果大致相同,可以增强其测量结果的可信度。

      Figure 3.  (a) Surface optical microscope image when the laser fluence F= 0.187 J/cm2,pulse number N= 1, it shows the response of the material surface with disordered scattered points; (b) Surface optical microscope image when the laser fluence F= 0.345 J/cm2, pulse number N= 9, it shows the obvious LIPSS structure on the surface; (c) Surface optical microscope image when the laser fluence F= 0.248 J/cm2, pulse number N= 40, it means that the material is obviously ablated, but LIPSS still exists at the bottom of the ablation pit

      Figure 4.  (a) Optical microscope image of material surfaces with the laser fluence is 345 mJ/cm2, pulse number N= 7; (b) AFM scanning diagram of the black frame part of figure (a); (c) Period and depth of the white line in figure (b); (d) Side view of the two-dimensional Fourier transform image of figure (a)

      与大多数作者得到的结果类似,在文中实验中,LIPSS的周期也随着能量密度的增大而增大。如图5(a)展示了在脉冲个数N= 5、9、15、20、30、40下,条纹周期随脉冲能量的变化关系。在能量密度较低的情况下,LIPSS周期的增长随脉冲能量密度的增大变化得较为缓慢,随着能量密度的增大,条纹周期与能量密度呈线性近似的关系,而后能量密度进一步增大,LIPSS周期随能量密度增长而增加的速度又逐渐趋于平缓。当入射的脉冲激光能量越大时,材料的温升越高,材料表面扰动加剧,分子运动愈发剧烈,材料在非平衡状态停留时间长[14],更有利于形成大周期的条纹结构。对线性增长部分进行拟合,拟合直线的斜率随N 变化的关系在图5(b)中给出。由图5(b)可见,N<15时,周期随能量密度增加的增长率基本恒定;N>15时,周期随能量密度增加的增长率随着N增加而迅速增大。图5(c)为同一脉冲个数下,改变激光能量密度所能得到的LIPSS周期的下限与上限,对其进行拟合,周期上下限随着脉冲个数的变化都是线性的,且周期上限随着脉冲个数变化的增长率高于下限。

      Figure 5.  (a) Fitting relationship between the fluence and fringe period, pulse number N= 5, 9, 15, 20, 30, 40; (b) When there is an approximate linear relationship between pulse number, period and fluence, the linear growth part is fitted, relationship between slope of fitting line and N; (c) Fitting diagram of the relationship between the lower limit and upper limit of LIPSS period and the pulse number obtained by changing the laser fluence under different pulse number

      而在能量密度不变的情况下,图6(a)为在能量密度F为94 mJ/cm2、160 mJ/cm2、248 mJ/cm2、345 mJ/cm2、467 mJ/cm2和589 mJ/cm2下条纹周期与脉冲个数的关系图,LIPSS的周期随着脉冲个数的增加而增大。将周期与脉冲个数的关系进行分段线性拟合得到周期随脉冲个数增加的增长率与能量密度的关系,如图6(b)所示,在同样的能量密度下,周期对脉冲的增长率并不是恒定的,当脉冲个数较少时,周期随脉冲个数增加的增长率较小,脉冲个数大时,周期随脉冲个数增加的增长率更大。这种结果可能是孵化效应[15]的结果,即当能量密度较低时,在激光与材料相互作用的过程中,往往需要几个脉冲的预作用,这种预作用使得材料表面的粗糙度不断增加,不仅增大了材料的作用面积,后续入射的激光在缺陷中来回反射,也提高了材料对能量的吸收率,材料产生了更为明显的响应。同时,不论是在脉冲个数较少的还是脉冲个数较多的情况下,随着能量密度的上升,周期随脉冲个数增加的增长率逐渐增大。当能量密度越大时,温升越高,根据经典的Arrhenius模型[15],热分解反应速率随温度的升高而增大,大分子链断裂,聚酰亚胺降解速率越快,单位脉冲作用下材料去除速率越高,周期随脉冲个数增加的增长率也增大。

      Figure 6.  (a) Fitting relationship between pulse number and fringe period when laser fluence F= 94 mJ/cm2, F= 160 mJ/cm2, F= 248 mJ/cm2, F= 345 mJ/cm2, F= 467 mJ/cm2, F= 569 mJ/cm2; (b) Relationship between the growth rate of the period increasing with the pulse number and the fluence under different fluence obtained according to figure (a)

    • 在激光与物质相互作用的模型中,根据光子能量、脉宽长度或者功率密度的不同,建立的理论模型是不同的。对于聚合物而言,光热作用与光化学作用一般情况下是同时存在的,但在紫外纳秒激光的作用下,光热作用往往占据主导地位。从实验结果也可以看出,当激光能量密度大时,在产生周期性条纹结构的烧蚀坑周围,能够观察到明显的迸溅点,说明激光的能量已经超过了材料的熔融阈值,公式(1)为一维热传导方程,用其估算激光入射后材料的温升[16]

      式中:a2=ρc/kρ为密度;k为导热系数;α 为材料在355 nm处的吸收系数;F0为激光的入射能量,具体数值见表1P(t)用来描述高斯激光,是关于时间t的函数,定义为:

      ParameterDensity ρ
      /kg·m-3
      Thermal conductivity, k/W·m−1·K−1Specific heat capacity, c/J·kg−1·K−1Absorption coefficient, α/m−1
      Value14200.2 11382×106

      Table 1.  Thermophysical parameters of PI

      式中:τ为脉冲宽度,这里取7 ns。

      值得注意的是,为了简化该物理模型,计算时并未考虑各参数对温度的依赖性,以及可能引起的材料物理化学状态的变化对热传导的影响。在此基础上,可以计算得出,产生LIPSS时,PI表面温度远高于PI的玻璃化转变温度516 K,以及熔点607 K。这与在烧蚀坑周围看到的迸溅点相吻合。

      当材料温升的峰值达到熔点时,得到对应入射激光能量密度为29 mJ/cm2。这些计算结果表明,在LIPSS的形成过程中,能量阈值的存在可能是为了确保材料的温升高于熔点。该值取决于材料的热性能,当温度高于玻璃化转化温度后,聚合物分子链段开始运动[17],表面不稳定性增强,温度继续上升高于熔点,分子链可以整体运动,发生迁移,聚合物有明显的流动性,此后熔化的材料再冷却,该过程可能是LIPSS形成的原因。同时,在激光对材料进行加热的过程中,材料软化,表观粘度随温度的升高而降低。根据已有的研究[18],高粘度区域LIPSS的周期会比较小,这与笔者的实验结果相吻合,当激光能量密度高时,材料温升高,表观粘度小,不稳定性增加,周期更大。

      图7所示,随着能量密度的增大,能够达到熔点与玻璃化转变温度的薄层厚度就越厚,当聚合物材料温度高于玻璃化转变温度时,进入强烈的不稳定状态,称为高弹态[19]。材料在较小的外力下也能迅速产生可恢复的形变。当温度高于熔点时,聚合物进入粘流态[19],这时,在外力的作用下,材料将发生不可逆的形变,材料的部分物理性能随之变化。此外,达到熔点的薄层冷却后进行重结晶[17],也会导致材料特性的变化,这可能解释了孵化效应产生的原因。将薄膜达到玻璃化温度的厚度和到达熔点的厚度与激光能量密度作线性拟合,到达玻璃化转化温度的薄膜厚度随激光能量密度增大的增长率始终高于温升到达熔点的薄膜厚度随能量密度增大的增长率。

      Figure 7.  Schematic diagram of the maximum depth at which the temperature rise can reach the melting point and glass transition temperature under different laser fluences

      图8描绘了不同能量密度下,材料表面温度维持在高于玻璃化转变温度以及熔点的时间。当能量密度越大时,材料在高弹态以及粘流态停留的时间越长,材料对外力高度敏感的时间越长,分子剧烈运动,向外扩散碰撞传递动能,对已有的周期性结构不断地加强,起到一种正反馈作用,也有利于更大周期的LIPSS的形成。

      Figure 8.  Time when the surface temperature of the material is maintained higher than the glass transition temperature and melting point

    • 文中利用7 ns的紫外激光对聚酰亚胺薄膜进行表面改性,当能量密度在54 ~ 589 mJ/cm2时,能观察到材料表面有微米级的周期性条纹产生,随着能量密度的增大,脉冲个数的增多,条纹周期增大,在4 ~6.65 μm间变化,并始终存在于激光烧蚀坑底部。当脉冲个数增多时,周期随着能量密度增大的增长率增大。同时,随着激光能量密度的上升,周期也随着脉冲个数增加的增长率而增大。文章通过热传导模型计算激光入射后材料温度随时间的变化,结果表明:在单脉冲激光作用下,聚酰亚胺表面温升已经高于材料的玻璃化转化温度以及熔点,聚合物从玻璃态向高弹态、粘流态转变,在外力的作用下发生不可逆形变,同时聚合物分子链断裂扩散,材料熔化,再冷却,最终导致了聚酰亚胺薄膜表面周期性结构的形成。

Reference (19)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return