Volume 50 Issue 1
Jan.  2021
Turn off MathJax
Article Contents

Yue Chen, Yang Haojun, Wu Haiyan, Li Yangfeng, Sun Ling, Deng Zhen, Du Chunhua, Jiang Yang, Ma Ziguang, Wang Wenxin, Jia Haiqiang, Chen Hong. Fundamental researches on the quantum well interband transition detector(Invited)[J]. Infrared and Laser Engineering, 2021, 50(1): 20211007. doi: 10.3788/IRLA20211007
Citation: Yue Chen, Yang Haojun, Wu Haiyan, Li Yangfeng, Sun Ling, Deng Zhen, Du Chunhua, Jiang Yang, Ma Ziguang, Wang Wenxin, Jia Haiqiang, Chen Hong. Fundamental researches on the quantum well interband transition detector(Invited)[J]. Infrared and Laser Engineering, 2021, 50(1): 20211007. doi: 10.3788/IRLA20211007

Fundamental researches on the quantum well interband transition detector(Invited)

doi: 10.3788/IRLA20211007
Funds:  National Natural Science Foundation of China(61571237);Natural Science Foundation of Jiangsu Province(BK20151509)
  • Received Date: 2020-11-20
  • Rev Recd Date: 2020-12-20
  • Available Online: 2021-01-22
  • Publish Date: 2021-01-22
  • Recently, the anomalous carrier transport in the quantum wells with the PN junction structures has been found experimentally, and the corresponding physical mechanism and the carrier transport model have been proposed. It is observed that the open circuit voltage or short-circuit current can be measured in the resonant excitation mode. Comparing the photoluminescence (PL) spectra of the two kinds of external circuits, it is found that the PL intensity decreased significantly under the short circuit condition. This suggests that the photogenerated carriers under the short circuit condition are not confined in the quantum well, but escaping from the junction region. However, this phenomenon of photocarriers escaping from the quantum wells is not found in the NN-type quantum well structure. Therefore, the effect of thermal excitation or tunneling is excluded to drive the carrier escaping from the quantum well. Based on this, the corresponding physical mechanism and carrier transport model are proposed. It is concluded that photogenerated carriers can escape from the quantum well directly under the built-in electric field of PN junction, and the radiative recombination luminescence occurs after the carrier escape process.
  • [1] Levine B F. Quantum-well infrared photodetectors [J]. J Appl Phys, 1993, 74(8): R1-R81. doi:  10.1063/1.354252
    [2] Razeghi M, Rogalski A. Semiconductor ultraviolet detectors[C]//Photodetectors: Materials & Devices, 1996.
    [3] Oder T N, Li J, Lin J Y, et al. Photoresponsivity of ultraviolet detectors based on InxAlyGa1−x−yN quaternary alloys [J]. Applied Physics Letters, 2000, 77(6): 791-793. doi:  10.1063/1.1306540
    [4] Akasaki I, Amano H, Murakami H, et al. Growth of GaN and AlGaN for UV/blue p-n junction diodes [J]. J Cryst Growth, 1993, 128(1-4): 379-383. doi:  10.1016/0022-0248(93)90352-W
    [5] Chang P C, Yu C L, Chang S J, et al. Low-noise and high-detectivity GaN UV photodiodes with a low-temperature AlN cap layer [J]. IEEE Sens J, 2007, 7(9): 1289-1292. doi:  10.1109/JSEN.2007.901263
    [6] Monroy E, Calle F, Pau J L, et al. Application and performance of GaN based UV detectors [J]. Physica Status Solidi (a), 2001, 185(1): 91-97. doi:  10.1002/1521-396X(200105)185:1<91::AID-PSSA91>3.0.CO;2-F
    [7] Alaie Z, Nejad S M, Yousefi M H. Recent advances in ultraviolet photodetectors [J]. Materials Science in Semiconductor Processing, 2015, 29: 16-55. doi:  10.1016/j.mssp.2014.02.054
    [8] Hartmann R, Hauff D, Lechner P, et al. Low energy response of silicon pn-junction detector [J]. Nuclear Instruments & Methods in Physics Research, 1996, 377(2-3): 191-196.
    [9] Zhou Y H, Zhang Y M, Meng X Z. Simulation and analysis of 6H-SiC pn junction ultraviolet photodetector [J]. Acta Phys Sin-Ch Ed, 2004, 53(11): 3710-3715.
    [10] Jani O, Ferguson I, Honsberg C, et al. Design and characterization of GaN∕InGaN solar cells [J]. Appl Phys Lett, 2007, 91(13): 1-20.
    [11] Fan J C C, Bozler C O, Chapman R L. Simplified fabrication of GaAs homojunction solar cells with increased conversion efficiencies [J]. Appl Phys Lett, 1978, 32(6): 390-392. doi:  10.1063/1.90065
    [12] Mallorqui A D, Eppie F M, Fan D, et al. Effect of the pn junction engineering on Si microwire-array solar cells [J]. Physica Status Solidi, 2012, 209(8): 1588-1591. doi:  10.1002/pssa.201228165
    [13] Li L K. Molecular-beam epitaxial growth of InSb on GaAs and Si for infrared detector applications [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1993, 11(3): 872-874.
    [14] Norton P. HgCdTe infrared detectors [J]. Opto-Electron Rev, 2002, 10(3): 159-174.
    [15] Rehm R, Masur M, Schmitz J, et al. InAs/GaSb superlattice infrared detectors [J]. Infrared Phys Techn, 2013, 59: 6-11.
    [16] Jiang C S, Moutinho H R, Friedman D J, et al. Measurement of built-in electrical potential in III-V solar cells by scanning Kelvin probe microscopy [J]. J Appl Phys, 2003, 93(12): 10035-10040. doi:  10.1063/1.1573736
    [17] Nomoto K, Hatakeyama Y, Katayose H, et al. Over 1.0 kV GaN p-n junction diodes on free-standing GaN substrates [J]. Physica Status Solidi, 2011, 208(7): 1535-1537. doi:  10.1002/pssa.201000976
    [18] Wu H, Ma Z, Jiang Y, et al. Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction [J]. Chinese Phys B, 2016, 25(11): 114-118.
    [19] Yang H, Ma Z, Jiang Y, et al. The enhanced photo absorption and carrier transportation of InGaN/GaN Quantum Wells for photodiode detector applications [J]. Scientific Reports, 2017, 7: 43357. doi:  10.1038/srep43357
    [20] Li Y, Jiang Y, Die J, et al. Visualizing light-to-electricity conversion process in InGaN/GaN multi-quantum wells with a p–n junction [J]. Chinese Phys B, 2018, 27(9): 097104. doi:  10.1088/1674-1056/27/9/097104
    [21] Sun Q, Wang L, Jiang Y, et al. Direct observation of carrier transportation process in InGaAs/GaAs multiple quantum wells used for solar cells and photodetectors [J]. Chinese Phys Lett, 2016, 33(10): 103-106.
    [22] Wang W, Wang L, Jiang Y, et al. Carrier transport in III–V quantum-dot structures for solar cells or photodetectors [J]. Chinese Phys B, 2016, 25(9): 174-179.
    [23] Sun L, Wang L, Liu J, et al. Anomalous enhancement of the absorption coefficient of GaAs in a p-n junction [J]. Superlattice Microst, 2018, 122: 80-84.
    [24] Sun L, Wang L, Lu J, et al. Room-temperature operating extended short wavelength infrared photodetector based on interband transition of InAsSb/GaSb quantum well [J]. Chinese Phys B, 2018, 27(4): 47209. doi:  10.1088/1674-1056/27/4/047209
    [25] Liu J, Wang L, Jiang Y, et al. A prototype photon detector based on interband transition of quantum wells [J]. J Infrared Millim Waves, 2017, 36(2): 129-134.
    [26] Jie L, Lu W, Ling S, et al. Anomalous light-to-electricity conversion of low dimensional semiconductor in p-n junction and interband transition quantum well infrared detector [J]. Acta Physica Sinica, 2018, 67(12): 128101. doi:  10.7498/aps.67.20180588
    [27] Wang T, Nakagawa D, Wang J, et al. Photoluminescence investigation of InGaN/GaN single quantum well and multiple quantum wells [J]. Appl Phys Lett, 1998, 73(24): 3571-3573. doi:  10.1063/1.122810
    [28] Graham D M, Dawson P, Godfrey M J, et al. Resonant excitation photoluminescence studies of InGaN/GaN single quantum well structures [J]. Appl Phys Lett, 2006, 89(21): 2988.
    [29] Schubert M F, Xu J, Dai Q, et al. On resonant optical excitation and carrier escape in GaInN/GaN quantum wells [J]. Appl Phys Lett, 2009, 94(8): 183507.
    [30] Miller D A B, Chemla D S, Damen T C, et al. Band-edge electroabsorption in quantum well structures: the quantum-confined stark effect [J]. Phys Rev Lett, 1984, 53(22): 2173-2176. doi:  10.1103/PhysRevLett.53.2173
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(617) PDF downloads(82) Cited by()

Related
Proportional views

Fundamental researches on the quantum well interband transition detector(Invited)

doi: 10.3788/IRLA20211007
  • 1. Key Laboratory for Renewable Energy, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  National Natural Science Foundation of China(61571237);Natural Science Foundation of Jiangsu Province(BK20151509)

Abstract: Recently, the anomalous carrier transport in the quantum wells with the PN junction structures has been found experimentally, and the corresponding physical mechanism and the carrier transport model have been proposed. It is observed that the open circuit voltage or short-circuit current can be measured in the resonant excitation mode. Comparing the photoluminescence (PL) spectra of the two kinds of external circuits, it is found that the PL intensity decreased significantly under the short circuit condition. This suggests that the photogenerated carriers under the short circuit condition are not confined in the quantum well, but escaping from the junction region. However, this phenomenon of photocarriers escaping from the quantum wells is not found in the NN-type quantum well structure. Therefore, the effect of thermal excitation or tunneling is excluded to drive the carrier escaping from the quantum well. Based on this, the corresponding physical mechanism and carrier transport model are proposed. It is concluded that photogenerated carriers can escape from the quantum well directly under the built-in electric field of PN junction, and the radiative recombination luminescence occurs after the carrier escape process.

    • 近年来,随着相干及非相干光源向红外波段及紫外波段的扩展,对高速、高灵敏光电探测器的需求迅速增加[1]。而理论上看,III-N化合物半导体材料可用于制备从红外波段到紫外波段的光电探测器,尤其是在紫外波段有着无可比拟的优势[2-5]。因此,基于III-N化合物半导体材料的可见光及紫外探测器在光通信、医学诊断、烟雾报警等方面具有广泛的应用前景[6-7]

      在光电探测器件中,光到电的转化过程是其最基本也是最核心的问题,是设计和制备出高性能探测器的基础。因此光电转换的动力学过程及其物理机制一直是半导体材料科学和器件物理的研究热点。目前,常用的太阳能电池和光伏型探测器等器件都是利用PN结的光伏效应来实现光电转换的[8-9],其被广泛应用在氮化物太阳能电池[10],GaAs基单结或多结太阳能电池[11]、Si基太阳能电池[12],以及InSb,HgCdTe和二类超晶格红外探测器等不同的材料体系中[13-15]。光电转化过程主要包括光的吸收和载流子的提取两部分。载流子的提取有采用外加偏压的方法,也有采用内建电场的方法。其中,PN结是内建电场提取载流子的一种非常重要的结构,它具有收集耗尽区中电子和空穴的特性[16-17]。当PN结处于光照条件下时,耗尽区中被激发出光生电子和空穴,随后在PN结内建电场的驱动下分别向PN结的两端漂移,从而输出电信号,实现光电转换。PN结探测器由于可以在零偏压或很小的反向偏压下工作,具有暗电流低、响应速度快等优点,是目前探测器领域研究的重点之一。

      近期的研究发现,PN结中存在一种新奇的现象,即PN结中产生的光生载流子不再限制在量子阱中,而是能够逃逸出量子阱,使得材料具有较高的量子效率[18-22]。这种反常的量子阱中光生载流子高效抽取的现象为量子阱带间跃迁探测器的设计提供了基础,使得光电探测器能够同时具备低暗电流和高响应度的优势[23-26]。文中将基于PN结型量子阱结构中这种反常的输运现象,通过InGaN/GaN量子阱带间跃迁光电探测器进行验证,进而提出了相应的物理机制与载流子输运模型。

    • 实验中两个样品都是用Veeco公司的GaN P125型MOCVD (3×2)进行外延。两个样品的结构如图1(a)所示。从图中可以看到,这两个样品结构上基本一致,除了最上面的一层GaN的掺杂不同而已,其中一个样品进行Mg掺杂,形成p-GaN;另外一个样品进行Si掺杂,形成n-GaN,也即两个样品中,GaN/InGaN量子阱结构处于PN结结构中和NN结结构中,以下对这两个样品分别简称为PN型和NN型 。PN型和NN型样品均在2 inch (1 inch=2.54 cm) C面蓝宝石上进行外延生长,其外延工艺基本一致,先在衬底上外延一层GaN,然后外延10个周期的GaN/InGaN量子阱结构,其中垒和阱的厚度分别为14 nm和2.5 nm。其中生长参数和各层厚度对两个样品完全一致,唯一的区别是最后一层的生长,PN型样品在最后一层外延一层p-GaN,厚度200 nm,掺杂Mg (需通过退火条件)使获得p型掺杂浓度约为5×1017 cm−3;NN型样品最后一层是200 nm厚的n-GaN,掺杂Si获得n型掺杂浓度约为3×1018 cm−3。外延片在制备完成后,通过半导体器件加工技术(光刻、ICP-RIE和电子束蒸发等)加工成芯片尺寸1 mm×1 mm的器件(n电极用Cr/Ti/Ni,p电极用Ni/Au)。在芯片制作完成后,对其进行光电性质的测量表征分析。

      Figure 1.  (a) Schematic diagram of experimental sample with the applied bias voltage; (b) Schematic diagram of resonance excitation mode

    • 光致荧光发光光谱(PL)测试是分析表征半导体量子阱结构材料的重要手段[27],文中主要通过PL谱对PN型和NN型两种结构进行波长为405 nm共振激发条件下的光电测试分析。实验中,PL测试系统利用衰减片实现激发光功率的连续可调,其最大激发功率为27 mW。PL测试系统是由此实验室自主搭建,包括:半导体激光器,金属膜衰减片,平凸透镜组件,斩波器,光栅光谱仪,光电探测器,SR830锁相放大器,测试软件等。光电响应测试系统也由实验室搭建,包括:半导体激光器,金属膜衰减片,平凸透镜组件,Keithley4200-SCS半导体参数分析仪等。测试采用405 nm激光器激发PN型和NN型结构中GaN/InGaN量子阱材料,这是一种共振激发模式,即激发光子能量介于量子阱阱层材料带隙和垒层材料带隙之间,入射光子只能被阱层材料吸收,产生电子空穴对[28-29]

    • 常温下,用405 nm激光对两种样品进行了光电测试分析,其激发功率为27 mW,在对NN型样品的测试中,考虑到其能带结构及量子阱中的量子限制斯塔克效应(QCSE),外加3 V电压来模拟PN型样品中的内建电场[30]。笔者分别测量了开路下的PL光谱以及短路(外加3 V偏压)下的PL光谱和此时的电流。测得开路和闭路条件下的PL光谱如图2所示。短路条件下的PN型样品的PL光谱峰相比于开路条件下有非常明显的降低,其积分强度只占开路条件下的4.85%。而对于NN型样品,外加3 V偏压下的PL强度相比开路条件下没有明显变化,其积分强度仅降低了0.18%。这说明在共振激发模式下,PN型样品的光生载流子没有被限制在量子阱内进行辐射复合发光,而NN型样品中的载流子则仍然在量子阱内复合。

      Figure 2.  PL spectra of samples under open and short circuit conditions. (a) PL spectra of the PN-type sample; (b) PL spectra of the NN-type sample

      为了深入了解光生载流子没有被限制在量子阱内的物理机制,笔者对PN型样品进行了常温下变激发功率的测试,也即是在不同的激发功率下测量样品的光电方面的性质。短路条件下的PL积分强度与开路条件下的比值随着功率的变化曲线如图3所示。

      Figure 3.  Curves of the PL spectral integral intensity versus the excitation power

      随着功率的增加,积分强度比值从1.42%增加到4.85%,即说明超过95%的光生载流子从量子阱中逃逸,并进入外电路形成光生电流。通过计算量子效率,在27 mW的激发功率下,PN型样品的外量子效率达到38.3%,而普通的量子阱结构材料的带间跃迁探测的量子效率不超过10%,所以其具备优异的光电探测器能力。对比之下,NN型样品却没有光生载流子的高效抽取现象,其实验结果表明共振激发产生的光生载流子被限制在量子阱中,只是在阱内进行辐射复合。而NN型样品中的量子阱结构和PN型样品中的完全相同,所以NN型样品的实验结果可排除热激发或者隧穿的作用导致光生载流子逃逸出量子阱,也说明了光生载流子在PN型量子阱带间跃迁探测器中的高效抽取具有全新的物理机制和输运模型。

      为了更深入的探究其机理,笔者在以上量子阱PN型材料基础上制备了吸收边为460 nm的InGaN/GaN量子阱带间跃迁光电探测器原型器件,并测量了其响应曲线,随后改变了激发光波长,得到了不同激发光波长下的开路与短路条件下的PL积分强度及比值,如图4所示。

      Figure 4.  (a) Response curve of the photocurrent versus the excitation photon energy; (b) PL integral intensities and its ratios under the open circuit and short circuit conditions versus different excitation photon energy

      由图中,可以注意到当激发光能量为2.75 eV时(达到材料的吸收边),样品开始有光电流响应,而PL积分强度比高达92.1%,说明此时大部分光生载流子仍被限制在量子阱内。当激发光能量升高超过2.95 eV时,短路与开路条件下的PL积分强度比值迅速下降并保持在30%左右,此时光电流趋近于40 μA,趋于不变。该结果证明了PL谱中未辐射复合发光的载流子的确是逃逸出了量子阱,进而输运进入了外电路,产生了光电流。

      比较PN结构和NN结构样品的实验结果可以看出,PN结可以使大部分共振激发产生的光生载流子从量子阱中逃逸。这些不再参与复合发光的载流子漂移进入外电路,形成了光电流。由此可见,PN结的存在使得大部分共振激发产生的光生载流子从量子阱中逃逸,从而加强了量子阱材料对光的吸收及量子阱中载流子的提取效率。

      对于该现象的物理机制,笔者给出了一些解释。量子阱中光吸收产生的光生载流子并不是一开始就处于限制能级之上,而是处于如图5(a)e1所示的对应于吸收光子能量的位置。处于该能量位置的载流子将不受垒的限制,可以直接从量子阱中逃逸。因而,当样品处于开路时,光生载流子首先从量子阱中逃逸,形成开路电压。当光生电压产生的电场与内建电场迅速建立起新的平衡后,光生载流子不再往PN结两端漂移。此时,大部分载流子将弛豫到基态e2进行复合发光。当PN结处于短路或者偏压下时,由于没有开路电压来抵消内建电场的作用,因而不受垒层限制的光生载流子e1在产生的瞬间立即被从量子阱中提取出来,来不及弛豫到限制态e2。因此,当PN结短接或处于偏压下时,大部分共振激发产生的光生载流子从量子阱中逃逸,形成光电流,而不是弛豫到限制态进行复合发光。

      Figure 5.  Schematic diagram of the carrier transport mechanism of the quantum well interband transition detector. (a) Under the open circuit condition; (b) Under the short circuit condition

      对于NN结构,即使在有外加偏压的情况下,吸收产生的光子载流子e1也是首先弛豫到限制能级e2,而处于限制能级的载流子从量子阱中逃逸相当困难。因此,即使给NN结构施加3 V的偏压,也只有不到1%的载流子从量子阱中逃逸。另外,该团队在InGaAs量子阱、InAs量子点等多个材料体系中也观察到了在p-n结电场作用下的类似现象,也进行了相应的讨论,得到了类似的结果[25]

    • 通过对比研究PN和NN型两种量子阱结构的光电转换性能,提出了量子阱带间跃迁探测器的物理机制和载流子输运模型。发现PN结的存在使得共振激发产生的光生载流子能够从量子阱中逃逸,从而获得较高的量子效率。而对于外加偏压下的NN结,只有少部分载流子能够从量子阱中逃逸,无法达到与PN结相同的效果。这说明PN结起到了一种特殊作用,能够加强量子阱中的光吸收和载流子输运能力。这让笔者能更深入理解PN结的存在对耗尽区内量子阱性质的影响,也提供了一种新的思路,可以将量子阱应用于PN结构的量子阱带间跃迁探测器中,来制备高性能的量子阱带间跃迁探测器。

Reference (30)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return