Volume 51 Issue 3
Apr.  2022
Turn off MathJax
Article Contents

Lei Yaoyuan, Chen Qikai, Liu Yitian, Ma Yaoguang. Principles and application progress of mid-infrared metasurfaces in imaging and detection (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220082. doi: 10.3788/IRLA20220082
Citation: Lei Yaoyuan, Chen Qikai, Liu Yitian, Ma Yaoguang. Principles and application progress of mid-infrared metasurfaces in imaging and detection (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220082. doi: 10.3788/IRLA20220082

Principles and application progress of mid-infrared metasurfaces in imaging and detection (Invited)

doi: 10.3788/IRLA20220082
Funds:  National Natural Science Foundation of China (61905213)
  • Received Date: 2022-01-10
  • Rev Recd Date: 2022-02-20
  • Accepted Date: 2022-03-14
  • Publish Date: 2022-04-07
  • The mid-infrared band contains two atmospheric windows as well as the molecular fingerprint region, and therefore has important applications in infrared imaging and detection. Conventional mid-infrared optics are expensive and need complicated fabrications limited by the material and processing technology in imaging. In terms of the detection, limited by the small molecular absorption cross-section, the sensitivity is extremely low and there is a great challenge for the trace chemical detection. Metasurfaces are two-dimensional arrays composed of artificial building blocks at the subwavelength scale. They have the characteristics of small size, easy integration and high degree of freedom, which may provide a new implementation scheme for manufacturing the low-cost, light-weight and integrated mid-infrared optical devices. Surface-enhanced infrared absorption can effectively enhance molecular vibration signals and improve the detection sensitivity. In this review, the mechanism of mid-infrared metasurfaces in electromagnetic wave regulation and the principals of mid-infrared detection applications are introduced. The research progress in the imaging and detection of mid-infrared metasurfaces is sorted out, including the polarization imaging, tunable and reconfigurable metasurfaces, other special functions and metasurface structures using gold, silver, aluminum, graphene, silicon, germanium and other materials based on plasmon or bound states in the continuum principles for the detection.
  • [1] Li X, Huang Y, Zhang P, et al. Infrared imaging system and applications [J]. Laser & Infrared, 2014, 44(3): 229-234. (in Chinese)
    [2] Pan Y, Zhao Y, Zhang F. IR fingerprint spectrum and its analyzing method [J]. Modern Instruments, 2000(1): 1-13. (in Chinese)
    [3] Neubrech F, Huck C, Weber K, et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas [J]. Chemical Reviews, 2017, 117(7): 5110-5145. doi:  10.1021/acs.chemrev.6b00743
    [4] Yang X, Sun Z, Low T, et al. Nanomaterial-based plasmon-enhanced infrared spectroscopy [J]. Advanced Materials, 2018, 30(20): 1704896. doi:  10.1002/adma.201704896
    [5] Zhang H, Wang J, Li N. Surface-enhanced infrared absorption [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2019, 49(12): 124204. (in Chinese)
    [6] Wang H L, You E M, Panneerselvam R, et al. Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design [J]. Light:Science & Applications, 2021, 10(1): 161.
    [7] Dong L, Yang X, Zhang C, et al. Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy [J]. Nano Letters, 2017, 17(9): 5768-5774. doi:  10.1021/acs.nanolett.7b02736
    [8] Yoo D, Mohr D A, Vidal-Codina F, et al. High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps [J]. Nano Letters, 2018, 18(3): 1930-1936. doi:  10.1021/acs.nanolett.7b05295
    [9] Hartstein A, Kirtley J R, Tsang J C. Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers [J]. Physical Review Letters, 1980, 45(3): 201-204. doi:  10.1103/PhysRevLett.45.201
    [10] Li N, Yin H, Zhuo X, et al. Infrared-responsive colloidal silver nanorods for surface-enhanced infrared absorption [J]. Advanced Optical Materials, 2018, 6(17): 1800436. doi:  10.1002/adom.201800436
    [11] Cerjan B, Yang X, Nordlander P, et al. Asymmetric aluminum antennas for self-calibrating surface-enhanced infrared absorption spectroscopy [J]. ACS Photonics, 2016, 3(3): 354-360. doi:  10.1021/acsphotonics.6b00024
    [12] Leitis A, Tseng M L, John-Herpin A, et al. Wafer-scale functional metasurfaces for mid-infrared photonics and biosensing [J]. Advanced Materials, 2021, 33(43): 2102232. doi:  10.1002/adma.202102232
    [13] Rodrigo D, Limaj O, Janner D, et al. Mid-infrared plasmonic biosensing with graphene [J]. Science, 2015, 349(6244): 165-168. doi:  10.1126/science.aab2051
    [14] Wu C, Guo X, Hu H, et al. Graphene plasmon enhanced infrared spectroscopy [J]. Acta Physica Sinica, 2019, 68(14): 148103. (in Chinese) doi:  10.7498/aps.68.20190903
    [15] Kuhner L, Hentschel M, Zschieschang U, et al. Nanoantenna-enhanced infrared spectroscopic chemical imaging [J]. ACS Sensors, 2017, 2(5): 655-662. doi:  10.1021/acssensors.7b00063
    [16] Rodrigo D, Tittl A, Ait-Bouziad N, et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces [J]. Nature Communications, 2018, 9(1): 2160. doi:  10.1038/s41467-018-04594-x
    [17] Zhu Y, Li Z, Hao Z, et al. Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface [J]. Light:Science & Applications, 2018, 7(1): 67.
    [18] Hoang C V, Oyama M, Saito O, et al. Monitoring the presence of ionic mercury in environmental water by plasmon-enhanced infrared spectroscopy [J]. Scientific Reports, 2013, 3(1): 1175. doi:  10.1038/srep01175
    [19] Chong X, Zhang Y, Li E, et al. Surface-enhanced infrared absorption: pushing the frontier for on-chip gas sensing [J]. ACS Sensors, 2018, 3(1): 230-238. doi:  10.1021/acssensors.7b00891
    [20] Hu H, Yang X, Guo X, et al. Gas identification with graphene plasmons [J]. Nature Communications, 2019, 10(1): 1131. doi:  10.1038/s41467-019-09008-0
    [21] Zhou H, Hui X, Li D, et al. Metal-organic framework-surface-enhanced infrared absorption platform enables simultaneous on-chip sensing of greenhouse gases [J]. Advanced Science, 2020, 7(20): 2001173. doi:  10.1002/advs.202001173
    [22] Fonollosa J, Rubio R, Hartwig S, et al. Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications [J]. Sensors and Actuators B:Chemical, 2008, 132(2): 498-507. doi:  10.1016/j.snb.2007.11.014
    [23] Soref R. Mid-infrared photonics in silicon and germanium [J]. Nature Photonics, 2010, 4(8): 495-497. doi:  10.1038/nphoton.2010.171
    [24] Shen W, Xue M and Yu J. Long wave infrared fast objective with wide field of view [J]. Acta Photonica Sinica, 2004, 33(4): 460-463. (in Chinese)
    [25] Zhang L, Chen L, Fan Y, et al. Development of mid-infrared transmitting glasses window and applications [J]. Acta Optica Sinica, 2011, 31(9): 296-304. (in Chinese)
    [26] Tang B, Wang Z, Fan Y, et al. Trends and status in mid-infrared glasses [J]. Infrared and Laser Engineering, 2008, 37(S3): 311-314. (in Chinese)
    [27] Dai S, Chen H, Li M, et al. Chalcogenide glasses and their infrared optical applications [J]. Infrared and Laser Engineering, 2012, 41(04): 847-852. (in Chinese)
    [28] Huang L, Coppens Z, Hallman K, et al. Long wavelength infrared imaging under ambient thermal radiation via an all-silicon metalens [J]. Optical Materials Express, 2021, 11(9): 2907-2914. doi:  10.1364/OME.434362
    [29] Zhang S, Kim M H, Aieta F, et al. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays [J]. Optics Express, 2016, 24(16): 18024-18034. doi:  10.1364/OE.24.018024
    [30] Zuo H, Choi D Y, Gai X, et al. High‐efficiency all‐dielectric metalenses for mid‐infrared imaging [J]. Advanced Optical Materials, 2017, 5(23): 1700585. doi:  10.1002/adom.201700585
    [31] Fan Q, Liu M, Yang C, et al. A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging [J]. Applied Physics Letters, 2018, 113(20): 201104. doi:  10.1063/1.5050562
    [32] Song N, Xu N, Shan D, et al. Broadband achromatic metasurfaces for longwave infrared applications [J]. Nanomaterials, 2021, 11(10): 2760. doi:  10.3390/nano11102760
    [33] Yan C, Li X, Pu M, et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces [J]. Applied Physics Letters, 2019, 114(16): 161904. doi:  10.1063/1.5091475
    [34] Cao G, Xu H-X, Zhou L-M, et al. Infrared metasurface-enabled compact polarization nanodevices [J]. Materials Today, 2021, 50: 499-515. doi:  10.1016/j.mattod.2021.06.014
    [35] Yao Y, Shankar R, Kats M A, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators [J]. Nano Letters, 2014, 14(11): 6526-6532. doi:  10.1021/nl503104n
    [36] Tittl A, Michel A K, Schaferling M, et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability [J]. Advanced Materials, 2015, 27(31): 4597-4603. doi:  10.1002/adma.201502023
    [37] Jiang S, Li J, Li J, et al. Genetic optimization of plasmonic metamaterial absorber towards dual-band infrared imaging polarimetry [J]. Optics Express, 2020, 28(15): 22617-22629. doi:  10.1364/OE.397868
    [38] Yong-qian L, Yong-jun G, Lei S, et al. Polarization-dependent absorption of rectangular-block metamaterials in infrared region [J]. Optical and Precision Engineering, 2014, 22(11): 2998-3003. (in Chinese) doi:  10.3788/OPE.20142211.2998
    [39] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction [J]. Science, 2011, 334(6054): 333-337. doi:  10.1126/science.1210713
    [40] Wang Jingdong, Ye Wencheng, Zhang Weiting, et al. Design of infrared metasurfaces splitter arrays [J]. Optical and Precision Engineering, 2021, 29(04): 674-681. (in Chinese) doi:  10.37188/OPE.20212904.0674
    [41] Liu Yitian,Chen Qikai, Tang Zhiyuan, et al. Research progress of aberration analysis and imaging technology based on metalens [J]. Chinese Optics, 2021, 14(4): 831-850. (in Chinese) doi:  10.37188/CO.2021-0014
    [42] Wang Yilin, Fan Qingbin, Xu Ting. Progress of advanced imaging applications based on electromagnetic metalens [J]. Infrared and Laser Engineering, 2021, 50(5): 20211026. (in Chinese) doi:  10.3788/IRLA20211026
    [43] Li Tianyou, Huang Lingling, Wang Yongtian. The principle and research progress of metasurfaces [J]. Chinese Optics, 2017, 10(5): 523-540. (in Chinese) doi:  10.3788/co.20171005.0523
    [44] Yu N, Aieta F, Genevet P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces [J]. Nano Letters, 2012, 12(12): 6328-6333. doi:  10.1021/nl303445u
    [45] Safaei A, Vázquez-Guardado A, Franklin D, et al. High-efficiency broadband mid-infrared flat lens [J]. Advanced Optical Materials, 2018, 6(13): 1800216. doi:  10.1002/adom.201800216
    [46] Pfeiffer C, Grbic A. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets [J]. Physical Review Letters, 2013, 110(19): 197401. doi:  10.1103/PhysRevLett.110.197401
    [47] Love A E H. The integration of the equations of propagation of electric waves [J]. Philosophical Transactions of the Royal Society of London. Series A, 1901, 197(287-299): 1-45. doi:  10.1098/rsta.1901.0013
    [48] Schelkunoff S A. Some equivalence theorems of electromagnetics and their application to radiation problems [J]. The Bell System Technical Journal, 1936, 15(1): 92-112. doi:  10.1002/j.1538-7305.1936.tb00720.x
    [49] Epstein A, Eleftheriades G V. Huygens’ metasurfaces via the equivalence principle: design and applications [J]. Journal of the Optical Society of America B, 2016, 33(2): A31-A50. doi:  10.1364/JOSAB.33.000A31
    [50] Campione S, Basilio L I, Warne L K, et al. Tailoring dielectric resonator geometries for directional scattering and Huygens' metasurfaces [J]. Optics Express, 2015, 23(3): 2293-2307. doi:  10.1364/OE.23.002293
    [51] Zhang L, Ding J, Zheng H, et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics [J]. Nature Communications, 2018, 9(1): 1481. doi:  10.1038/s41467-018-03831-7
    [52] Leitis A, Heßler A, Wahl S, et al. All‐dielectric programmable Huygens' metasurfaces [J]. Advanced Functional Materials, 2020, 30(19): 1910259. doi:  10.1002/adfm.201910259
    [53] Shalaginov M Y, An S, Yang F, et al. Single-element diffraction-limited fisheye metalens [J]. Nano Letters, 2020, 20(10): 7429-7437. doi:  10.1021/acs.nanolett.0c02783
    [54] Li X, Ma X, Luo X. Principles and applications of metasurfaces with phase modulation [J]. Opto-Electronic Engineering, 2017, 44(3): 255-275. (in Chinese)
    [55] Pancharatnam S. Generalized theory of interference and its applications [J]. Proceedings of the Indian Academy of Sciences - Section A, 1956, 44(6): 398-417. doi:  10.1007/BF03046095
    [56] Berry M V. Quantal phase factors accompanying adiabatic changes [J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1984, 392(1802): 45-57. doi:  10.1098/rspa.1984.0023
    [57] Tseng M L, Jahani Y, Leitis A, et al. Dielectric metasurfaces enabling advanced optical biosensors [J]. ACS Photonics, 2021, 8(1): 47-60. doi:  10.1021/acsphotonics.0c01030
    [58] Tittl A, John-Herpin A, Leitis A, et al. Metasurface-based molecular biosensing aided by artificial intelligence [J]. Angewandte Chemie International Edition, 2019, 58(42): 14810-14822. doi:  10.1002/anie.201901443
    [59] Osawa M , Ikeda M. Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films: contributions of electromagnetic and chemical mechanisms [J]. The Journal of Physical Chemistry, 1991, 95(24): 9914-9919. doi:  10.1021/j100177a056
    [60] Osawa M. Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS) [J]. Bulletin of the Chemical Society of Japan, 1997, 70(12): 2861-2880. doi:  10.1246/bcsj.70.2861
    [61] Merklin G T , Griffiths P R. Influence of chemical interactions on the surface-enhanced infrared absorption spectrometry of nitrophenols on copper and silver films [J]. Langmuir, 1997, 13(23): 6159-6163. doi:  10.1021/la960828s
    [62] Wadayama T, Takada M, Sugiyama K, et al. Infrared absorption enhancement of C60 on silver islands: contribution of charge transfer and collective electron resonance [J]. Physical Review B, 2002, 66(19): 193401. doi:  10.1103/PhysRevB.66.193401
    [63] Yujun Z, Shyamala Devi M, Travis H, et al. Review of mid-infrared plasmonic materials [J]. Journal of Nanophotonics, 2015, 9(1): 1-21.
    [64] Le F, Brandl D W, Urzhumov Y A, et al. Metallic nanoparticle arrays: A common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption [J]. ACS Nano, 2008, 2(4): 707-718. doi:  10.1021/nn800047e
    [65] Hsu C W, Zhen B, Stone A D, et al. Bound states in the continuum [J]. Nature Reviews Materials, 2016, 1(9): 16048. doi:  10.1038/natrevmats.2016.48
    [66] Rybin M , Kivshar Y. Supercavity lasing [J]. Nature, 2017, 541(7636): 164-165. doi:  10.1038/541164a
    [67] Rybin M V, Koshelev K L, Sadrieva Z F, et al. High-Q supercavity modes in subwavelength dielectric resonators [J]. Physical Review Letters, 2017, 119(24): 243901. doi:  10.1103/PhysRevLett.119.243901
    [68] Koshelev K, Lepeshov S, Liu M, et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum [J]. Physical Review Letters, 2018, 121(19): 193903. doi:  10.1103/PhysRevLett.121.193903
    [69] Ou K, Yu F, Li G, et al. Mid-infrared polarization-controlled broadband achromatic metadevice [J]. Science Advances, 2020, 6(37): eabc0711. doi:  10.1126/sciadv.abc0711
    [70] Fan Q, Wang Y, Liu M, et al. High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light [J]. Optics Letters, 2018, 43(24): 6005-6008. doi:  10.1364/OL.43.006005
    [71] Jung M, Dutta-Gupta S, Dabidian N, et al. Polarimetry using graphene-integrated anisotropic metasurfaces [J]. ACS Photonics, 2018, 5(11): 4283-4288. doi:  10.1021/acsphotonics.8b01216
    [72] Wei J, Li Y, Wang L, et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection [J]. Nature Communications, 2020, 11(1): 6404. doi:  10.1038/s41467-020-20115-1
    [73] Bai J, Wang C, Chen X, et al. Chip-integrated plasmonic flat optics for mid-infrared full-Stokes polarization detection [J]. Photonics Research, 2019, 7(9): 1051-1060. doi:  10.1364/PRJ.7.001051
    [74] Li X, Wang H, Xu X, et al. Mid-infrared full-Stokes polarization detection based on dielectric metasurfaces [J]. Optics Communications, 2021, 484: 126690. doi:  10.1016/j.optcom.2020.126690
    [75] Chen Y, Pu S, Wang C, et al. Voltage tunable mid-wave infrared reflective varifocal metalens via an optomechanic cavity [J]. Optics Letters, 2021, 46(8): 1930-1933. doi:  10.1364/OL.417224
    [76] Lewi T, Butakov N A, Evans H A, et al. Thermally reconfigurable meta-optics [J]. IEEE Photonics Journal, 2019, 11(2): 1-16.
    [77] Pryce I M, Aydin K, Kelaita Y A, et al. Highly strained compliant optical metamaterials with large frequency tunability [J]. Nano Letters, 2010, 10(10): 4222-4227. doi:  10.1021/nl102684x
    [78] Roy T, Zhang S, Jung I W, et al. Dynamic metasurface lens based on MEMS technology [J]. APL Photonics, 2018, 3(2): 021302. doi:  10.1063/1.5018865
    [79] Reeves J B, Jayne R K, Stark T J, et al. Tunable infrared metasurface on a soft polymer scaffold [J]. Nano Letters, 2018, 18(5): 2802-2806. doi:  10.1021/acs.nanolett.7b05042
    [80] Dong W, Qiu Y, Zhou X, et al. Tunable mid‐infrared phase‐change Metasurface [J]. Advanced Optical Materials, 2018, 6(14): 1701346. doi:  10.1002/adom.201701346
    [81] Tian J, Li Q, Lu J, et al. Reconfigurable all-dielectric antenna-based metasurface driven by multipolar resonances [J]. Optics Express, 2018, 26(18): 23918-23925. doi:  10.1364/OE.26.023918
    [82] Alaee R, Albooyeh M, Tretyakov S, et al. Phase-change material-based nanoantennas with tunable radiation patterns [J]. Optics Letters, 2016, 41(17): 4099-4102. doi:  10.1364/OL.41.004099
    [83] Wei M, Song Z, Deng Y, et al. Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces [J]. Materials Letters, 2019, 236: 350-353. doi:  10.1016/j.matlet.2018.10.136
    [84] Yin X, Steinle T, Huang L, et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces [J]. Light: Science & Applications 2017, 6 (7): e17016.
    [85] Peng C, Ou K, Li G, et al. Tunable and polarization-sensitive perfect absorber with a phase-gradient heterojunction metasurface in the mid-infrared [J]. Optics Express, 2021, 29(9): 12893-12902. doi:  10.1364/OE.422519
    [86] Sun Y, Wang Y, Ye H, et al. Switchable bifunctional metasurface based on VO2 for ultra-broadband polarization conversion and perfect absorption in same infrared waveband [J]. Optics Communications, 2022, 503: 127442. doi:  10.1016/j.optcom.2021.127442
    [87] Ghosh S K, Yadav V S, Das S, et al. Tunable graphene-based metasurface for polarization-independent broadband absorption in lower mid-infrared (MIR) range [J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(2): 346-354. doi:  10.1109/TEMC.2019.2900757
    [88] Cheng J, Fan F, Chang S. Recent progress on graphene-functionalized metasurfaces for tunable phase and polarization control [J]. Nanomaterials, 2019, 9(3): 398. doi:  10.3390/nano9030398
    [89] Park J, Kang J H, Kim S J, et al. Dynamic reflection phase and polarization control in metasurfaces [J]. Nano Letters, 2017, 17(1): 407-413. doi:  10.1021/acs.nanolett.6b04378
    [90] Shalaginov M Y, An S, Zhang Y, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance [J]. Nature Communications, 2021, 12(1): 1225. doi:  10.1038/s41467-021-21440-9
    [91] Qu Y, Li Q, Du K, et al. Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST [J]. Laser & Photonics Reviews, 2017, 11(5): 1700091.
    [92] Sherrott M C, Hon P W C, Fountaine K T, et al. Experimental demonstration of >230 degrees phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces [J]. Nano Letters, 2017, 17(5): 3027-3034. doi:  10.1021/acs.nanolett.7b00359
    [93] Dabidian N, Dutta-Gupta S, Kholmanov I, et al. Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces [J]. Nano Letters, 2016, 16(6): 3607-3615. doi:  10.1021/acs.nanolett.6b00732
    [94] Watts C M, Liu X, Padilla W J. Metamaterial electromagnetic wave absorbers [J]. Advanced Materials, 2012, 24(23): OP98-OP120.
    [95] Zeng B, Huang Z, Singh A, et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging [J]. Light:Science & Applications, 2018, 7: 51.
    [96] Li F, Deng J, Zhou J, et al. HgCdTe mid-Infrared photo response enhanced by monolithically integrated meta-lenses [J]. Scientific Reports, 2020, 10(1): 6372. doi:  10.1038/s41598-020-62433-w
    [97] Zhang S, Soibel A, Keo S A, et al. Solid-immersion metalenses for infrared focal plane arrays [J]. Applied Physics Letters, 2018, 113(11): 111104. doi:  10.1063/1.5040395
    [98] Hou H, Zhang Y, Luo Z, et al. Design and fabrication of monolithically integrated metalens for higher effective fill factor in long-wave infrared detectors [J]. Optics and Lasers in Engineering, 2022, 150: 106849. doi:  10.1016/j.optlaseng.2021.106849
    [99] Akın O, Demir H V. High-efficiency low-crosstalk dielectric metasurfaces of mid-wave infrared focal plane arrays [J]. Applied Physics Letters, 2017, 110(14): 143106. doi:  10.1063/1.4979664
    [100] Zheludev N I, Noginov M A, Engheta N, et al. All-dielectric metasurface lenses for focal plane arrays operating in mid-wave infrared spectrum [C]//Metamaterials, Metadevices, and Metasystems 2018, 2018.
    [101] Bogh C L, Muhowski A J, Montealegre D A, et al. Over three hundred percent increased light extraction from emitters at mid-infrared wavelengths using metalenses [J]. ACS Applied Electronic Materials, 2020, 2(8): 2638-2643. doi:  10.1021/acsaelm.0c00510
    [102] Arbabi A, Briggs R M, Horie Y, et al. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers [J]. Optics Express, 2015, 23(26): 33310-33317. doi:  10.1364/OE.23.033310
    [103] Chen K, Dao T D, Ishii S, et al. Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy [J]. Advanced Functional Materials, 2015, 25(42): 6637-6643. doi:  10.1002/adfm.201501151
    [104] Neubrech F, Pucci A, Cornelius T W, et al. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection [J]. Physical Review Letters, 2008, 101(15): 157403. doi:  10.1103/PhysRevLett.101.157403
    [105] Abb M, Wang Y, Papasimakis N, et al. Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays [J]. Nano Letters, 2014, 14(1): 346-352. doi:  10.1021/nl404115g
    [106] Brown L V, Zhao K, King N, et al. Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties [J]. Journal of the American Chemical Society, 2013, 135(9): 3688-3695. doi:  10.1021/ja312694g
    [107] Chen K, Adato R, Altug H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy [J]. ACS Nano, 2012, 6(9): 7998-8006. doi:  10.1021/nn3026468
    [108] Cubukcu E, Zhang S, Park Y-S, et al. Split ring resonator sensors for infrared detection of single molecular monolayers [J]. Applied Physics Letters, 2009, 95(4): 043113. doi:  10.1063/1.3194154
    [109] Brown L V, Yang X, Zhao K, et al. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA) [J]. Nano Letters, 2015, 15(2): 1272-1280. doi:  10.1021/nl504455s
    [110] Aouani H, Šípová H, Rahmani M, et al. Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas [J]. ACS Nano, 2013, 7(1): 669-675. doi:  10.1021/nn304860t
    [111] Wallace G Q, Foy H C, Rosendahl S M, et al. Dendritic plasmonics for mid-infrared spectroscopy [J]. The Journal of Physical Chemistry C, 2017, 121(17): 9497-9507. doi:  10.1021/acs.jpcc.7b02039
    [112] Wu C, Khanikaev A B, Adato R, et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers [J]. Nature Materials, 2011, 11(1): 69-75.
    [113] Huck C, Vogt J, Sendner M, et al. Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods [J]. ACS Photonics, 2015, 2(10): 1489-1497. doi:  10.1021/acsphotonics.5b00390
    [114] Limaj O, Etezadi D, Wittenberg N J, et al. Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes [J]. Nano Letters, 2016, 16(2): 1502-1508. doi:  10.1021/acs.nanolett.5b05316
    [115] Etezadi D, Warner J B t, Lashuel H A, et al. Real-time in situ secondary structure analysis of protein monolayer with mid-infrared plasmonic nanoantennas [J]. ACS Sensors, 2018, 3(6): 1109-1117. doi:  10.1021/acssensors.8b00115
    [116] Hui X, Yang C, Li D, et al. Infrared plasmonic biosensor with tetrahedral DNA nanostructure as carriers for label-free and ultrasensitive detection of miR-155 [J]. Advanced Science, 2021, 8(16): 2100583. doi:  10.1002/advs.202100583
    [117] Hu H, Yang X, Zhai F, et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons [J]. Nature Communications, 2016, 7: 12334. doi:  10.1038/ncomms12334
    [118] Wenger T, Viola G, Kinaret J, et al. High-sensitivity plasmonic refractive index sensing using graphene [J]. 2 D Materials, 2017, 4(2): 025103.
    [119] Li Z, Zhu Y, Hao Y, et al. Hybrid metasurface-based mid-infrared biosensor for simultaneous quantification and identification of monolayer protein [J]. ACS Photonics, 2019, 6(2): 501-509. doi:  10.1021/acsphotonics.8b01470
    [120] Tittl A, Leitis A, Liu M, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces [J]. Science, 2018, 360(6393): 1105-1109. doi:  10.1126/science.aas9768
    [121] Leitis A, Tittl A, Liu M, et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval [J]. Science Advances, 2019, 5(5): eaaw2871. doi:  10.1126/sciadv.aaw2871
    [122] Chen Y-S, Meng D, Ma W-Z, et al. Fingerprint detection in the mid-infrared region based on guided-mode resonance and phonon-polariton coupling of analyte [J]. Optics Express, 2021, 29(23): 37234-37244. doi:  10.1364/OE.438354
    [123] Liu Z, Zhu D, Rodrigues S P, et al. Generative model for the inverse design of metasurfaces [J]. Nano Letters, 2018, 18(10): 6570-6576. doi:  10.1021/acs.nanolett.8b03171
    [124] Elsawy M M R, Lanteri S, Duvigneau R, et al. Numerical optimization methods for metasurfaces [J]. Laser & Photonics Reviews, 2020, 14(10): 1900445.
    [125] Jin Z, Mei S, Chen S, et al. Complex inverse design of meta-optics by segmented hierarchical evolutionary algorithm [J]. ACS Nano, 2019, 13(1): 821-829. doi:  10.1021/acsnano.8b08333
    [126] Campbell S D, Sell D, Jenkins R P, et al. Review of numerical optimization techniques for meta-device design [Invited] [J]. Optical Materials Express, 2019, 9(4): 1842. doi:  10.1364/OME.9.001842
    [127] Yao K, Unni R, Zheng Y. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale [J]. Nanophotonics, 2019, 8(3): 339-366. doi:  10.1515/nanoph-2018-0183
    [128] Ma W, Liu Z, Kudyshev Z A, et al. Deep learning for the design of photonic structures [J]. Nature Photonics, 2021, 15(2): 77-90. doi:  10.1038/s41566-020-0685-y
    [129] Li J, Bao L, Jiang S, et al. Inverse design of multifunctional plasmonic metamaterial absorbers for infrared polarimetric imaging [J]. Optics Express, 2019, 27(6): 8375-8386. doi:  10.1364/OE.27.008375
    [130] Koppens F H, Chang D E, Garcia de Abajo F J. Graphene plasmonics: A platform for strong light-matter interactions [J]. Nano Letters, 2011, 11(8): 3370-3377. doi:  10.1021/nl201771h
    [131] Hu Y, Li X, Wang X, et al. Progress of micro-nano fabrication technologies for optical metasurfaces [J]. Infrared and Laser Engineering, 2020, 49(9): 20201035. (in Chinese) doi:  10.3788/IRLA20201035
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(1604) PDF downloads(323) Cited by()

Related
Proportional views

Principles and application progress of mid-infrared metasurfaces in imaging and detection (Invited)

doi: 10.3788/IRLA20220082
  • 1. State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
  • 2. International Research Center for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
Fund Project:  National Natural Science Foundation of China (61905213)

Abstract: The mid-infrared band contains two atmospheric windows as well as the molecular fingerprint region, and therefore has important applications in infrared imaging and detection. Conventional mid-infrared optics are expensive and need complicated fabrications limited by the material and processing technology in imaging. In terms of the detection, limited by the small molecular absorption cross-section, the sensitivity is extremely low and there is a great challenge for the trace chemical detection. Metasurfaces are two-dimensional arrays composed of artificial building blocks at the subwavelength scale. They have the characteristics of small size, easy integration and high degree of freedom, which may provide a new implementation scheme for manufacturing the low-cost, light-weight and integrated mid-infrared optical devices. Surface-enhanced infrared absorption can effectively enhance molecular vibration signals and improve the detection sensitivity. In this review, the mechanism of mid-infrared metasurfaces in electromagnetic wave regulation and the principals of mid-infrared detection applications are introduced. The research progress in the imaging and detection of mid-infrared metasurfaces is sorted out, including the polarization imaging, tunable and reconfigurable metasurfaces, other special functions and metasurface structures using gold, silver, aluminum, graphene, silicon, germanium and other materials based on plasmon or bound states in the continuum principles for the detection.

    • 中红外波段(2.5~25 µm)包含了两个大气窗口(3~5 µm和8~14 µm),利用大气窗口探测目标物体辐射出的红外光可以进行远距离红外热成像。红外成像系统将人眼的感知范围从可见光扩展到了不可见的红外,在国防军事、环境监测、医学成像等方面至关重要。光学系统、红外探测器和电子处理系统三部分组成了典型的红外成像系统,其中光学系统和红外探测器对红外成像系统的成像质量和应用范围起着决定性作用[1]

      中红外光谱(2.5~25 µm, 4000~400 cm−1)因其存在分子振动产生的吸收光谱而经常被应用于物质检测[2]。利用中红外光谱可以以非破坏、无标签的方式直接表征分子特征,可用于检测无机物、有机物、高分子化合物,定性或定量分析有机物等。受分子吸收截面很小的限制(σabs≈10−20 cm2),振动吸收信号微弱,对分子的检测灵敏度低,对微量化学物质检测具有较大挑战。采用表面增强红外吸收(Surface-Enhanced Infrared Absorption, SEIRA)[3-6]可以有效解决这一问题,利用分子振动与超表面结构发生耦合共振,增强分子振动信号,提高检测灵敏度。这一方法已经在金[7- 8]、银[9- 10]、铝[11-12]、石墨烯[13- 14]等材料中实现并被用于高光谱成像[15]、生物分子检测[13, 16- 17]、环境污染物检测[18]和气体检测[19-21]等领域中。

      大多数传统光学材料如硅酸盐玻璃和光学聚合物在波长超过3 µm时会因存在较强的本征吸收变得不透明,不适合用于制作中红外光学器件。目前的中红外光学器件主要由硅[22-23]、锗[24]、硒化锌[1]、氟化物玻璃[25-26]、硫系玻璃[27]等材料制成。这些材料在中红外波段具有良好的透光性,但是往往成本昂贵、加工复杂。在中红外的许多应用例如可穿戴设备和自主无人机监控,对光学设备的尺寸、重量和功率(Size, weight, and power, SWaP)都提出了严格的要求[28]。然而,传统光学设计调控相位分布的方法通常为改变界面的几何形状或折射率,受天然材料的介电常数和磁导率的限制,器件所占空间通常较大。

      超表面是由在亚波长尺度的人造单元构成的二维结构阵列。通过在界面处引入相位、透过率突变调控电磁波,通过改变超表面单元结构的形状、尺寸大小、空间取向等对光的相位、偏振、振幅等进行调控。超表面具有体积小、易集成、调控自由度高等特点,能够为制造低成本、轻型化、集成化的中红外光学器件提供一种新的实现方案。目前为止,学界已经提出了许多基于超表面的中红外光学器件,可实现透镜成像[28-32]、偏振控制[33- 34]、吸收器[35-38]、涡旋光束的产生[39]、分光[40]等功能。

      文中首先介绍中红外超表面调控电磁波的机理及其中红外检测应用的原理。然后,着重整理超表面结构在中红外波段的成像与检测方面的研究进展,包括偏振成像、可调及可重构超表面成像、其他特殊功能以及用于检测的基于等离子体激元和连续体束缚态原理的超表面结构。

    • 超表面在中红外成像的基本原理主要为局域表面等离激元共振、惠更斯原理、传播相位和贝里相位[41-43],利用这些原理可以对电磁波的相位、振幅、偏振等进行调控,从而实现透镜成像、偏振控制、涡旋光束生成等功能。

    • 表面等离激元是指电磁波入射到介质与金属分界面时,金属表面自由电子与入射电磁波相互作用形成的一种特殊的电磁模式。当金属表面的自由电子的振动频率与入射电磁波的频率相匹配时会发生共振,若电磁波被限制在金属表面很小的区域内如金属纳米颗粒或金属微纳结构内,则称为局域表面等离激元共振(Localized Surface Plasmon Resonance, LSPR)。常通过激发金属天线的局域表面等离激元共振来实现对电磁波的调控,通过改变金属天线的尺寸、形状和空间取向等在亚波长的范围内引入相位突变。

      2011年,Yu等[39]通过金纳米棒组成的V形天线阵列在界面处引入相位突变,在8 µm波长实验验证广义折反射定律,在中红外波段约5~10 µm实验观察到异常折反射现象,并使用V形天线产生具有螺旋波前并携带轨道角动量的涡旋光束。2012年,Yu等[44]利用V形天线阵列设计了可在波长5~12 µm范围内工作的四分之一波片超表面,如图1(a)所示,能够将任意方向的入射线偏振光转变为圆偏振光。2018年,Safaei等[45]采用耦合的金纳米盘设计超表面透镜,对于最优设计实验测试在4~10 µm中红外范围内可保持超过70%的透过率。

      Figure 1.  Mid-infrared metasurface structures based on different electromagnetic wave control mechanism. (a) Metasurface quarter-wave plate based on the V-shaped antenna[44]; (b) Dielectric Huygens metasurface operating near the mid-IR wavelength of 5.2 µm, schematic tilted view of a rectangular meta-atom structure, the phase shift and transmittance corresponding to the eight meta-atom elements used to construct the meta-optical device, and the scanning electron microscope image of the fabricated metasurface structure, respectively[51]; (c) Long-wavelength infrared metalens composed of silicon nanopillars arranged on a square lattice. The building block of all-silicon metalens (left) and simulated amplitude and phase for eight selected nanopillars (right)[31]

      基于金属纳米结构的超表面具有较大的欧姆损耗,难以实现高效率的光场调控,用由介电材料构成的超表面可以有效的解决这一问题。通过全电介质超表面单元调控电磁波的原理可分为三类:惠更斯原理、传播相位原理、贝里相位原理。

    • 惠更斯原理又称为次级波理论,指任意时刻波前平面上的任意一点,可以视为次级球面波的子波源。2013年,Pfeiffer等[46]解释了如何用表面等效原理[47-48]设计惠更斯超表面,并设计了在微波波段的无反射惠更斯超表面。通过调节超表面的电极化率和磁极化率可以调控超表面结构的透过率。2016年,Epstein等[49]总结了现有的惠更斯超表面设计方法,并提出了一种基于等效原理的惠更斯超表面综合设计方法,包含微观的超表面结构设计和宏观的超表面设计。

      2015年,Campione等[50]提出使用PbTe分裂立方体谐振器可以在中红外波段宽光谱范围满足高透过率和360°相移,有望用于惠更斯超表面。2018年,Zhang等[51]设计并实验演示了工作在5.2 µm波长下的介电惠更斯透射超表面,如图1(b)所示,采用具有高折射率且能支持高质量Mie共振的PbTe材料构造H型超表面单元,衬底选用CaF2,对于线偏振光在透射模式下整体光学效率可达75%,厚度仅为自由空间波长的八分之一,同时展示了具有衍射极限聚焦和成像功能的中红外透射超表面透镜,有望用于中红外光学系统的设计。2020年,Leitis等[52]提出了可编程全电介质红外惠更斯超表面,超表面由Ge3Sb2Te6-Ge-Ge3Sb2Te6多层圆盘组成,实验显示在3.75 µm波长GST所有晶态的平均透过率保持在53%以上,且数值数据提取的光相位显示能够进行81%的全2π相移。2020年,Shalaginov等[53]使用工作在5.2 µm波长的惠更斯超表面结构制造单层超表面透镜,视场范围可接近180°,并且实验证明可在整个视场上无像差聚焦和成像。

    • 传播相位指的是电磁波在传播的过程中会产生光程差,利用这一光程差来实现对相位的调控[54]。波长为λ的电磁波在有效折射率为n的均匀介质中传播距离d,电磁波累积的传播相位是$ \phi = n{k_0}d$${k_0} = 2\text{π}/ \lambda $是自由空间波矢。根据等式,可以通过改变厚度d来调节相位,或者在保持d不变时基于介质等效折射率理论,对折射率n进行空间调制。即按不同的占空比排列介质柱或孔等结构以改变其等效折射率,从而实现对相位的调控。

      2017年,Zuo等[30]采用MgF2衬底和氢化非晶硅纳米柱(α-Si:H)实现工作波长在4 µm的中红外偏振不敏感、高效全介电超表面透镜,能够形成接近衍射极限聚焦光斑并且可以达到78%的聚焦效率。2018年,Fan等[31]设计了工作在长波红外10.6 µm、数值孔径0.6、偏振无关、由全硅纳米圆柱构成的超表面透镜,如图1(c)所示,能够将入射光会聚成约1.08倍波长大小的光斑且能够高分辨率成像,角分辨率可达2.2 mrad。上述工作均在特定波长下设计、在激光照射下实验。2021年,Huang等[28]设计、制造、表征了数值孔径0.45、直径2 cm、工作波长10 µm的全硅纳米方柱超表面透镜,并在混合温度环境(模拟不同波长)中进行测试,例如正常人体温度,高温65 ℃、320 ℃以及低温0 ℃下,虽然存在色差且具有较低的空间分辨率,但仍然能够对不同温度下发射黑体辐射的物体成像,说明了中红外超表面透镜在环境热辐射应用中的可行性。2021年,Leitis等[12]设计了锗纳米圆柱排列在六边形Al2O3晶格薄膜上的直径700 µm、数值孔径0.36的超表面透镜,实验测量该透镜可以对6.5 µm波长的光达到90.3%的透过率、70.4%的聚焦效率、直径22.2 µm的衍射极限光斑尺寸。

    • Pancharatnam-Berry(PB)贝里相位或者几何相位,1956年印度拉曼研究所Pancharatnam教授[55]发现电磁波在偏振态转化过程中会产生一个额外相位。1984年,几何相位的概念由英国Berry教授[56]首次提出。电磁波在超表面结构中的几何相位可以用琼斯矩阵来说明[54],对于圆偏振光,经过各向异性超表面后透射电场表达式为:

      式中:${t_u} $${t_v} $为各向异性超表面两个主轴方向的透射复振幅;$ \zeta $为主轴ux轴夹角,σ=±1,对应于右旋和左旋偏振态;${E_{xout}} $为出射电磁波的x偏振分量;${E_{yout}} $为出射电磁波的y偏振分量。从表达式可以观察到,透射场包含两部分:一部分是与入射电磁波旋向相同的电磁波;一部分是与入射电磁波旋向相反的透射电磁波,且附加了$2 \sigma \zeta $的相位延迟,附加的相位延迟即为几何相位,因此可以通过改变各向异性超表面结构的旋转角度来调控相位。

      2019年,Yan等[33]提出一种用于中红外10.6 µm主动照明偏振成像的硅矩形柱超表面,通过改变矩形柱的长宽与角度实现相位0~2π的覆盖,实验中可在实时条件下同时在两个正交偏振态成像,该项工作揭示了紧凑中红外偏振检测超表面系统的潜力。

    • 中红外超表面光谱检测主要基于表面增强红外吸收原理,使用等离子体平台[4]实现对分子振动信号的显著增强,在红外光谱上观察到对应于分子指纹的共振峰,从而实现对物质的检测。等离子体具有的较大欧姆损耗将导致低品质因数Q谐振,使检测性能不理想,近年来,有研究提出基于准连续体束缚态原理、使用高折射率介电材料产生高Q共振的方法,利用成像实现分子指纹检测[57-58]

    • 1980年,Hartstein等[9]发现使用衰减全反射技术薄金属覆盖层或底层可将分子单层的红外吸收提高20倍,这一现象被称为表面增强红外吸收(Surface-Enhanced Infrared Absorption, SEIRA)。目前普遍认为关于表面增强红外吸收至少有两种不同机理:电磁效应和化学效应[3, 59-62]

      电磁效应机理,分子的增强吸收强度正比于入射光的局域场增强[6]。表面等离激元共振,尤其是纳米结构的局域表面等离激元共振(LSPR)[63],以及避雷针效应(Lightning rod effect, LRE)[64]都可以增强局域电场强度。对于棒状结构,棒两端的电场增强最大[10]

    • 连续体中的束缚态(Bound states in the continuum, BIC)是可以与带走能量的辐射波的连续光谱共存的、仍保持局域化的波[65]。真正的BIC在理论上具有无限大的品质因数Q和零线宽。在实际中,当Q和谐振宽度变得有限时,可以实现准BIC,也称为超腔模式[66-67]。准BIC模式的利用为调整超表面结构的共振带宽、光谱位置、品质因数Q以及电磁场分布提供了极大的灵活性[12]。当超表面单元结构的面内对称性被破环,真正BIC转变为准BIC,产生高Q共振[57, 68]

    • 偏振态(State of Polarization,SOP)是电磁波的固有特性,表征振荡电场的矢量性质,确定了电磁波如何与物质相互作用,并携带关于物质的组成与结构的重要信息,是各种光学技术的基础。超表面结构可以对电磁波的偏振态进行控制、检测等[34]

      超表面可用于中红外偏振成像[33]、涡旋光束的产生[69]、利用入射光偏振态的不同实现变焦超透镜[70]等。2019年,Yan等[33]展示了一种用于中红外(10.6 µm)主动照明偏振成像全硅器件,在两个正交偏振通道下同时进行实时成像。2020年,Ou等[69]提出中红外波段偏振控制的宽带消色差方法,使用与硅基半导体制造兼容的全硅双折射超表面控制相位色散和偏振,并在3.5~5 µm的连续带宽内设计并制造了偏振控制的同轴宽带消色差聚焦涡旋光束发生器(Broadband achromatic focusing optical vortex generator, BAFOV)(如图2(a)所示)和具有高偏振隔离度的离轴双焦宽带消色差聚焦分束器(Broadband achromatic focusing splitter, BAFS),可用于偏振成像和多维显示。

      Figure 2.  Mid-infrared polarization devices. (a) Schematic illustration of the BAFOV generation with polarization-dependent functions (left). The birefringent meta-atoms are made of monocrystalline Si (right)[69]; (b) Schematic of the GIAM-based polarimeter[71]; (c) Schematic of the Mid-IR full-Stokes polarization detection device design with seven cells for direct Stokes parameter measurement[73]

      超表面的偏振特性也可用于偏振选择。传统的检偏系统需要一系列级联的光学元件如波片、偏振器、光栅等,阻碍了该系统未来在集成器件中的应用,且这些系统在偏振态的测量速度和精度方面也受到限制,超表面的出现可以为这些问题提供一种有效的解决方法。

      2018年,Jung等[71]提出使用电驱动的石墨烯集成各向异性超表面(graphene-integrated anisotropic metasurfaces, GIAMs)来测量入射光束的偏振态的方法。各向异性超表面由连续纳米线和C形偶极子天线组合而成位于单层石墨烯上,如图2(b)所示,工作波长可在6.7、6.8 µm处。对于y偏振,来自纳米线的宽带反射和来自天线的谐振反射产生法诺干涉造成反射率在谐振波长处急剧降低,被称为电磁感应透明。反射的y偏振光的幅度和相位取决于由栅极电压决定的石墨烯的光学特性,而GIAM对x偏振光的光学响应是对栅极电压不敏感的。通过扫描施加在器件上的栅极电压并拟合测量的反射强度,提取入射光的斯托克斯参数。实验发现用GIAM测量的斯托克斯参数与使用传统旋转分析仪方法测量的斯托克斯参数非常一致,且基于GIAM的偏振仪可以提取所有的四个斯托克斯参数,包括区分左旋右旋圆偏振光,该发现朝着高速超薄电光偏振器件迈出了有希望的一步。2020年,Wei等[72]展示了中红外超表面改性的石墨烯光电探测器,超表面由T形金属纳米天线组成,位于石墨烯薄片顶部。通过测量光伏效应引起的矢量光电流来测量偏振角,具有零偏置操作、高探测率、级联和可扩展光响应、免校准偏振检测等优点。

      在中红外波段的偏振器件大多是反射式,难以在光电探测器和成像传感器上进行单片集成。2019年,Bai等[73]展示了工作在约3.8 µm中红外波长的芯片集成超表面器件,如图2(c)所示,工作在透射模式下,可以检测入射光的任意偏振状态,由七个等离子体超表面组成。图中P0为无结构单元用于测量入射光总强度,P1P2P3P4是四个不同方向的金属纳米光栅用于测量线偏振光,P5P6由两层超表面垂直整合而成用于测量左旋偏振光与右旋偏振光,一层为由十字形天线组成的等离子体超表面四分之一波片,一层为纳米光栅组成的线偏振滤波器,斯托克斯参数可以通过直接测量七个偏振滤波器的散射强度来计算。

      之前的中红外偏振器件大多基于等离子体超表面,其较高的欧姆损耗将导致效率降低。2021年,Li等[74]提出了基于介质Si超表面的中红外偏振检测器件,可测量连续全斯托克斯参数。超表面由三个具有相同尺寸的双焦透镜组成,可以将不同偏振分量的光汇聚到光电探测器所需的不同点,仿真结果表明重构的斯托克斯参数的均方根误差小于0.005,在波长5 µm处工作效率可以达到75.42%,与等离子体结构相比,损耗大大降低,效率明显提高。

    • 一般的超表面的特性,由其超表面单元的几何参数、材料的介电常数决定。超表面设计完成后,其功能也随之确定,不具备主动调谐的能力。随着光学的不断发展,人们意识到静态超表面结构的局限性,因此开始研究可调及可重构超表面。超表面的调节机理有电调制[75]、热调制[76]、机械拉伸调制[77]、微机电系统[78-79]等,在中红外波段的可调谐性材料有GST[36, 80-84]、VO2[85-86]等相变材料、石墨烯[35, 87-88]、氧化铟锡(ITO)[89]等。

      GST是一种常见的相变材料,由锗(Ge)、锑(Sb)和碲(Te)三种元素组成,传统上用于可重写光盘和相变存储器中。GST可在无序非晶态和有序晶态两种相态之间转换,通过两种不同状态下介电常数不同实现对电磁波振幅和相位的调控。根据锗(Ge)、锑(Sb)和碲(Te)比例不同,GST存在多个稳定的化学构成,如Ge2Sb2Te5 (GST-225)[80-81]、Ge3Sb2Te6 (GST-326)[82-83]等。在中红外波段,GST的晶态与非晶态的介电常数的实部具有明显对比,而且其介电常数虚部小,吸收损耗低,可显著提高中红外光学器件的工作效率。GST相变材料可用于振幅控制[36]、相位调控[90]、可调热辐射[91]中。

      2015年,Tittl等[36]提出了具有多光谱成像能力的可调完美吸收器,Ge3Sb2Te6作为间隔层位于铝镜和方形铝纳米天线阵列之间,构成金属-电介质-金属三层结构,如图3(a)所示。在中红外波段具有大于90%的吸收率,通过改变铝纳米天线的尺寸及晶态与非晶态的转换可以实现谐振波长的可调,并且首次进行了具有多光谱热成像能力的波段可选择、温度可切换中红外完美吸收体的实验演示。2017年,Yin等[84]将Ge3Sb2Te6与超表面相结合设计了可调光束偏转器和双焦点柱透镜,如图3(b)所示,50 nm厚的GST-326上排列几何相位的金纳米超表面,根据GST的状态可以选择一组等离子体天线与特定工作波长的入射光发生强烈相互作用。在3.1 µm波长下,若GST处于非晶态则图3(b)中A型天线与入射光作用,若GST处于晶态则B型天线与入射光作用。双焦点柱透镜在非晶态下0.5 mm焦距处以约5%效率聚焦,晶态下1 mm焦距处以约10%效率聚焦。与Ge2Sb2Te5(GST)相比,在红外波段,Ge2Sb2Se4Te1(GSST)在晶态和非晶态下都表现出更好的宽带透明特性,这是降低光学损耗的关键。2021年,Shalaginov等[90]设计了一种工作波长5.2 µm、在CaF2基底上由GSST惠更斯单元构成的变焦超表面透镜,如图3(c)所示。实验中在非晶态下在焦距1.5 mm处以23.7%聚焦效率聚焦,在晶态下在焦距2.0 mm处以21.6%聚焦效率聚焦,可以进行高分辨率、无像差、无串扰成像,这项工作证明了非机械有源超表面可以实现与涉及机械运动部件的传统精密体光学器件相当的光学质量,突出了有源超表面在成像、传感、显示等方面的优势。

      Figure 3.  GST phase-change material metasurfaces. (a) Sketch of the switchable perfect absorber device (left) and measured reflection spectra in amorphous and crystalline conditions for different antenna sizes (right)[36]; (b) Active plasmonic metasurface for beam switching (left) and experimental results for the cylindrical bifocal lens (right)[84]; (c) Artistic rendering of a reconfigurable varifocal metalens (left) and well-resolved lines of USAF-1951 resolution charts (right)[90]

      石墨烯是sp2杂化的碳原子按正六角形蜂窝状排列的单原子层二维材料,是一种半金属材料,其导带和价带交于一点(狄拉克点)。外加电压或者化学掺杂可以对石墨烯的费米能级调节,以实现对光学特性的调控。石墨烯在中红外波段具有低损耗、中等载流子浓度(1012~1013 cm−2)的特性,且其等离子体共振频率位于红外-太赫兹波段[92]

      2014年,Yao等[35]设计了由金属薄膜、介质层和在石墨烯上的等离子体结构组成的超表面吸收器,通过在石墨烯上施加栅极电压将吸收器切换到临界耦合状态,可以实现高达100%的调制深度,并基于此设计了光学调制器,如图4(a)所示,在6 µm处可以达到超过95%的调制深度,在5.4~7.3 µm可获得超过50%的调制深度,响应时间小于10 ns。2017年,Sherrott等[92]设计并制造了栅极电可调石墨烯-金超表面,如图4(b)所示,随着费米能级(EF)的变化,反射电磁波可以在8.5 µm处达到237°最大相位调制,在8.7 µm波长下具有206°的平滑相位变化,高于之前单层石墨烯与等离子体超表面集成的在7.7 µm波长下的55°相位可调[93]和ITO与金超表面集成在5.94 µm波长下的180°相位可调[89]

      Figure 4.  Graphene electrically tunable metasurfaces. (a) Mid-infrared optical modulator based on an electrically tunable metasurface absorber[35]. Schematic of the ultrathin optical modulator based on a tunable metasurface absorber and a scanning electron microscope (SEM) image of the metasurface on graphene (left). Measured reflection spectra from the metasurface absorber for different gate voltages (right); (b) The gate-tunable graphene-gold reconfigurable mid-infrared metasurface[92]. Schematic of a gate-tunable device for control of reflected phase and SEM image of gold resonators on graphene (left). The scale bar indicates 1 μm. Phase modulation at wavelengths of 8.2 µm, 8.5 µm, and 8.7 µm (circles-experiment, line-simulation) (right); (c) Hybrid graphene metasurface allows for electrically tunable resonant absorption[95]. Schematic of the hybrid graphene metasurface (left) and measured reflection spectra when applying different gate voltages (right)

      石墨烯电可调超表面吸收器存在依赖于高压偏置的问题,在中红外波段,需要高栅极电压的原因是在金属接地平面与金属天线阵列间存在厚电介质层(通常在几百纳米)[94]。2018年,Zeng等[95]设计并演示了混合石墨烯超表面自由空间中红外调制器。采用将电介质层中的大部分材料替换为在施加偏压下导电且在中红外表现为电介质的材料的方法降低所需栅极电压。如图4(c)所示,将略微导电的a-Si层作为栅电极的一部分,将超薄的Al2O3作为栅极电介质来增加电容。通过调整费米能级,约7 V的低栅极电压偏置可以在宽带宽上实现高达90%的调制深度和超过1 GHz的高调制速度。这项工作为快速时空调制的红外波前工程提供可能性,将该超表面形成像素阵列用于高帧率单像素成像的方法在实时热成像、医学检测等应用中有巨大潜力。

      柔性材料也是实现可调超表面的一种方法。通过机械调整柔性基底材料的形状,可以改变超表面单元的电磁响应,实现机械可重构超表面。2010年,Pryce等[77]设计了位于PDMS基板上的金平面耦合开环谐振器(Split ring resonator, SRR)阵列,如图5所示,通过机械拉伸PDMS改变SRR间隙的电容和谐振器之间耦合强度,从而改变谐振频率,实验证实谐振波长可以实现约400 nm宽范围调谐,这项工作首次证明了柔性基板的弹性和塑性变形能够使超表面具有宽可调性。2018年,Reeves等[79]演示了使用基于微机电系统(Microelectromechanical systems, MEMS)的模板光刻技术在软微结构聚合物支架上制造金属电磁超表面结构,通过设计聚合物支架的机械变形,施加适度的应变来调节在中红外波段的超表面反射率。

      Figure 5.  A schematic of the substrate prior to stretching with Au split ring resonators attached and a schematic of a stretched array (Top); The measured reflectance spectra and representative environmental scanning electron microscope (ESEM) images for the double SRR array for various degrees of strain (bottom)[77]

    • 红外焦平面阵列(Infrared Focal Plane Array,IR FPA)常用于热成像相机和医学成像装置,使用超表面与其集成[96-98],可以提高其工作温度、灵敏度、工作效率,也有助于降低因焦平面阵列尺寸减小带来的光学串扰[99-100]。超表面若与IR FPAs集成通常需满足以下特性:(1)因为大多数IR FPAs为背照式,所以超表面透镜需工作在透射模式并且是浸入式以便将光聚焦到探测器材料中;(2)超表面透镜需制作在探测器背面,制作材料应与探测器晶片基板一致,且制造工艺与探测器制造兼容;(3)超表面透镜可扩展为微透镜阵列且坚固耐用,避免出现FPA均匀性和可操作性问题;(4)超表面透镜具有高聚焦效率,偏振不敏感,宽带的特性。2018年,Zhang等[97]采用直接在GaSb衬底刻蚀圆纳米柱方法设计了工作在3~5 µm波长下、透射式、偏振不敏感超表面透镜,实验测试最高聚焦效率可达52%,并制造了10×10超表面透镜阵列证明这种方法对于FPA的可扩展性,有望与IR FPAs单片集成。

      超表面透镜可用于提高超晶格发光二极管(Superlattice light-emitting diode, SLED)光提取效率[101],激光光束的准直[102]。2015年,Arbabi等[102]提出用于准直单模量子级联激光器输出光束的中红外介电超表面平面透镜,该超表面透镜以六边形蓝宝石衬底上的非晶硅圆柱为结构单元,使用数值孔径0.86、焦距300 µm、透过率79%的偏振不敏感超表面透镜对来自4.8 µm分布式反馈量子级联激光器的中红外辐射进行准直,得到准直后的光束的半发散角为0.36°,远小于未准直的发散角,光束质量因数M2=1.02,优于常规的准直单模二极管激光器(通常M2在1.1~1.7)。

    • 中红外光谱包含了源自化学键固有振动模式的特征分子吸收指纹,可以直接表征具有该光谱范围独有的化学特异性的分子的结构,是一种强大的无损和无标记技术。但是,中红外波长(2.5~25 µm)与分子的尺寸(<10 nm)存在巨大的失配,这导致振动吸收信号非常微弱,检测灵敏度低,使用传统红外光谱方法对探测微量分析物的振动模式具有较大挑战。表面增强红外吸收为这一问题提供了一种解决途径,分子振动信号可以被增强103~105倍,能够有效提高红外光谱的检测灵敏度,在生物分子的检测、气体检测等应用领域都展现出巨大的潜力。

    • 金属如金Au、银Ag、铝Al等离激元可用于表面增强红外吸收。因为金的介电常数在红外波段接近于完美的Drude模型,可以产生明显的等离子体共振,大部分关于表面增强红外吸收的研究使用金纳米结构。并且金在环境条件下稳定、具有生物相容性,在生物学和医学的表面增强红外吸收中有广阔前景。铝也可以用于表面增强红外吸收,铝是一种兼容互补金属氧化物半导体(Complementary Metal-Oxide Semiconductor, CMOS)工艺的金属,能够支持从紫外到红外的超宽光谱范围的共振[12]。在铝表面形成的氧化铝层可以钝化天线结构防止进一步氧化[11, 103]

      虽然金属的等离激元共振频率通常位于可见-近红外区域,但通过改变材料的尺寸、形状可以在中红外波段实现金属等离激元共振增强。常用的表面增强红外吸收的结构为一维棒状纳米结构[104]。通过调整其长径比,可以将等离激元共振与分析物分子特定的振动频率相匹配。改变单纳米线的排列方式形成二聚体[105]、四聚体[106],可以有效增大局域电场增强;不对称的纳米十字架结构[107],可以形成两个吸收峰同时检测两种不同频率的分子振动信号。相比于一维棒状纳米结构,复杂纳米结构例如裂环[108]、扇形结构[109]、对数周期梯形结构[110]、树枝状纳米结构[111]、领结形结构[7]、非对称结构[112]等也可以实现很好的红外增强效果,以及其他功能例如产生多个等离激元共振峰等。基于巴比涅原理的纳米狭缝[113],同轴纳米孔[8]也可以激发等离激元共振增强红外吸收。

      表面增强红外吸收可用于生物分子的检测,可以对脂质膜进行化学特异性检测和监测[114],对蛋白质单层的二级结构进行实时分析[115],对micro-RNA进行快速、无标记、超灵敏检测[116]。2018年,Rodrigo等[16]提出了一种化学特异性、无标记的中红外生物传感器,如图6(a)所示。传感器的超表面由两组金纳米偶极子组成,可以同时提供低频和高频共振,在酰胺和亚甲基的吸收带同时提供高达三个数量级的局域近场强度增强,可以实时解析脂质膜与不同多肽的相互作用。实验证明该传感器可以分析突出囊泡模拟物中肽诱导的神经递质货物的释放,为生物分析和制药工程提供了有价值工具。2021年,Leitis等[12]在Al2O3膜上制造铝Al纳米天线,基于自相似多谐振设计使用表面增强红外吸收光谱实现宽带生物传感,可以同时在1600 cm−1和2900 cm−1实现电场增强以分别增强蛋白质和脂质的重叠吸收带,从而实现对蛋白质和脂质囊泡之间相互作用的实时敏感和无标记监测。实验证实该等离子体膜芯片适用于实时、化学特异性的水中生物传感。

      Figure 6.  Metal-based metasurfaces for surface enhanced infrared absorption. (a) Chemically specific, label-free nanophotonic biosensor in the mid-infrared[16]; (b) MOF-SEIRA platform for simultaneous sensing of CO2 and CH4 gases[21]

      表面增强红外吸收也可用于气体检测[19]。2020年,Zhou等[21]将金属有机骨架(metal-organic framework, MOF)集成到多共振表面增强红外吸收平台,如图6(b)所示,同时对超低浓度温室气体CO2、CH4进行片上传感,具有响应时间快、精度高(最大误差:CO2:1.1%,CH4:0.4%)、在宽浓度范围内具有出色的线性的特点。SEIRA平台由Au-MgF2-Au的结构形成Fabry-Perot腔达到超材料吸收体功能,能够提供超过1500倍的最大局域近场增强。MOF可以对CO2和CH4的吸附和解吸具有高度选择性和可逆性,为温室气体传感,一体化、实时、片上多气体检测方法提供了强大的工具。

      石墨烯等离激元在中红外波段具有高光场束缚能力、低本征损耗、电学可调和宽光谱响应等优异性质[14],是实现表面增强红外光谱灵敏探测的一种理想方案,被广泛应用于分子指纹探测[13, 117]、气体识别[20]、折射率传感[118]等领域。

      2015年, Rodrigo等[13]将石墨烯纳米带阵列(宽度W=20~60 nm,周期P≈2W)置于Si/SiO2衬底上制备了基于石墨烯的可调中红外生物传感器。当传感器表面覆盖蛋白质双层(重组蛋白A/G和山羊抗小鼠免疫球蛋白G(IgG))时,消光光谱发生了超过200 cm−1的频移,并在1660 cm−1和1550 cm−1处出现两个光谱凹陷峰对应于amide Ⅰ和Ⅱ带;并将石墨烯纳米带阵列与金偶极子阵列进行对比,显示石墨烯在中红外区域具有更强的场局域能力、更强的光-蛋白质相互作用。2016年,Hu等[117]在纳米膜上设计石墨烯等离子体结构,解决了传统石墨烯等离子体结构中的强等离子体-声子耦合问题,并且是第一个可覆盖整个分子指纹区域(600~1500 cm−1)的电可调等离子体装置,如图7(a)所示。2018年,Zhu等[17]提出了基于光导率的中红外生物传感器,传感器是由单层石墨烯与金属纳米天线阵列组成的混合超表面,具有高灵敏度、可对分子的结合量化、性能稳定的优势,可以作为表面增强红外光谱的基底检测低分子量分析物,对200 pM(36 pg/mL)的基于亲和结合的葡萄糖进行定量测量。2019年,Li等[119]展示了由石墨烯和金纳米天线阵列构成的基于超表面的中红外生物传感器,可对生物分子同时实现高灵敏度测量和高特异性识别,能够确定蛋白质免疫球蛋白(IgG)分子的二级结构,可以检测浓度低至30 pM的蛋白质IgG分子。2019年,Hu等[20]使用石墨烯纳米结构检测和识别气体分子NO2、N2O、NO和SO2的旋转振动模式。石墨烯纳米带上气体分子的高物理吸附与超受限等离子体近场结合,可以实现800 zeptomole/µm2分子的高灵敏度检测,如图7(b)所示。

      Figure 7.  Graphene metasurfaces for surface-enhanced infrared absorption. (a) Schematic of graphene plasmon enhanced molecular fingerprint sensor[117]; (b) Experimental scheme of the graphene plasmon device for gas identification[20]

    • 利用各种等离子体可以实现表面增强红外吸收(SEIRA),但是其较大的欧姆损耗导致低品质因数Q谐振使得实现的性能并不理想;基于高折射率介电材料的纳米结构谐振器可以提供低固有损耗和与互补金属氧化物半导体(Complementary Metal-Oxide Semiconductor, CMOS)的兼容性,被应用于各种超表面器件设计。

      2018年,Tittl等[120]设计一种基于全介电高品质因数谐振超表面元件的中红外纳米光子传感器,如图8所示。超表面由各向异性的椭圆形氢化非晶硅(a-Si:H)谐振器的之字形阵列组成,在线偏振光的照射下利用连续体中的束缚态驱动的超腔模式产生高Q谐振。通过因子S缩放谐振器的几何结构可以直接对谐振调谐,实现平均品质因数Q为115的1370~1770 cm−1的光谱覆盖。将不同因子的超表面组合成二维像素化介电超表面,利用反射光谱能够在多个光谱点读取分子吸收特征,将所得信息转换为类似条形码的空间吸收图进行成像,可以高灵敏度检测生物、聚合物和农药分子的特征。该方法无需光谱测定、频率扫描或移动机械部件即可解析吸收指纹,为实现灵敏且多功能的小型化中红外光谱设备铺平道路。

      Figure 8.  Molecular fingerprint retrieval and spatial absorption mapping of a mid-IR nanophotonic sensor based on all-dielectric high-Q metasurface elements[120]

      与硅材料相比,锗具有更高的折射率和在中红外波段更低的吸收损耗,2019年,Leitis等[121]设计了基于角度复用的之字形排列的椭圆形锗谐振器超表面。通过角度扫描测量反射率,在1100 ~1800 cm−1的宽光谱范围内获得高Q(Q>100)谐振。使用该超表面将每个入射角的反射信号与相应共振频率下的分子吸收强度关联,以此来检测表面吸附分子的特征中红外吸收指纹。实验证实可以实现无光谱仪的蛋白质、核酸适配体、多聚赖氨酸的分子指纹检测,这项工作也表明超表面极化和角度控制在分子指纹的宽带传感方面的巨大潜力。

      上述设计模型复杂、制造要求高,2021年,Chen等[122]仿真模拟了易于制造的具有角度复用功能的氟化钙(CaF2)基板上的LiCl光栅阵列超表面,将导模共振的光谱峰与分析物的声子模式耦合以增强中红外指纹从而可对B4C、SiO2和CaSO4进行检测。

    • 文中综述了基于中红外波长的超表面结构调控电磁波的原理,并列举了基于此原理的超表面结构在成像方面的应用。文中介绍了中红外超表面结构在偏振成像方面的应用,列举了在中红外波段的使用GST相变材料、石墨烯、柔性材料的可调及可重构超表面。

      中红外光谱能够精确反映分子振动信息,文中简要阐述了表面增强红外吸收的电磁机理以及连续体束缚态原理。利用表面增强红外吸收可以增强分子的红外光谱响应,提高检测灵敏度。文中总结了使用基于等离子体激元(金、银、铝、石墨烯)的超表面结构并介绍了其在生物检测与气体检测方面的应用,同时介绍了基于连续体束缚态原理的利用介电材料(硅、锗)实现的生物传感与气体检测的方法。

      在文中大部分超表面结构设计是通过正向传统设计方法获得,人为选择超表面结构和材料,利用时域有限差分法等方法数值模拟,大量参数扫描获得超表面结构库,最终找到满足设计条件的合适参数。该传统设计方法不需要复杂的算法模型,设计流程较简单,但是因初始结构是依赖于经验模型、最终的结构参数是反复试验得到的存在人为引导错误的问题[123]。近年来,人们对超表面性能的要求越来越高,使得由正向设计得到的一般的简单图形往往无法满足。随着计算机技术的发展与提高,逆向设计例如基于梯度的算法[124]、遗传算法[125-126]、深度学习算法[127-128]被用于超表面结构的设计。逆向设计通常使用目标函数反馈更新结构获得所需超表面结构,具有参数调控维度多、设计灵活等优点。其中,粒子群算法[129]、遗传算法[37]已被应用于中红外超表面结构的设计,有利于实现高性能、多功能超表面光学器件。

      随着金纳米天线等纳米结构和石墨烯等新材料的出现,表面增强红外吸收在过去几十年间快速发展,在对化学物质、生物分子、气体等的高灵敏度痕量检测中具有重要应用。进一步提高表面增强红外吸收信号增强可以对现有的应用(例如利用红外技术检测生理样品中的低含量蛋白质)带来积极影响[4]。表面增强红外吸收的最终目标是实现单原子、单分子的检测,石墨烯等离激元表现出的对中红外光束的强束缚能力等优异性能使其有潜力成为单分子检测平台[4, 130]。对纳米结构的设计创新和对红外等离子体材料的不断探索也有助于实现这一目标。

      与体积较庞大且成本昂贵的传统中红外光学元件相比,超表面结构具有卓越的光学性能、SWaP优势和制造可扩展性,有望在未来的红外光学系统中被广泛采用,可以在红外成像、自由空间光通信、遥感、医学成像和物质检测等关键领域实现应用。纳米制造技术[131]的快速发展也将促进未来紧凑、集成超表面的发展。

Reference (131)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return