Volume 51 Issue 3
Apr.  2022
Turn off MathJax
Article Contents

Xia Lipeng, Liu Yuheng, Zhou Peiji, Zou Yi. Advances in mid-infrared integrated photonic sensing system (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220104. doi: 10.3788/IRLA20220104
Citation: Xia Lipeng, Liu Yuheng, Zhou Peiji, Zou Yi. Advances in mid-infrared integrated photonic sensing system (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220104. doi: 10.3788/IRLA20220104

Advances in mid-infrared integrated photonic sensing system (Invited)

doi: 10.3788/IRLA20220104
Funds:  National Natural Science Foundation of China (61705099);Natural Science Foundation of Shanghai(21ZR1443100)
  • Received Date: 2022-01-20
  • Rev Recd Date: 2022-02-25
  • Accepted Date: 2022-03-15
  • Available Online: 2022-04-29
  • Publish Date: 2022-04-07
  • In recent years, mid-infrared (wavelength range of 2–20 μm) integrated photonics has received a lot of attention for its potential applications, including absorption spectroscopy, thermal imaging, and free-space communication. The mid-infrared, which includes several atmospheric transparency windows, has an inherent advantage for sensing applications. The mid-infrared photonic devices also benefit from the mature technologies developed in the near-infrared for device design, test, and fabrication. In addition, integrated photonic sensors have demonstrated comparable sensitivity to their bulk counterparts, while featuring low power consumption, low cost, compact structure, and easy integration with other devices. Therefore, the mid-infrared integrated photonic sensors will play an important role in industrial detection, scientific research, medical diagnosis, military security, life, and other fields in the future. Here, Recent advances in the mid-infrared integrated photonic sensors have been reviewed. Three major components, sensing unit, spectrometer, and detector were discussed. An outlook for its future development was also proposed.
  • [1] Zou Y, Chakravarty S, Chung C-J, et al. Mid-infrared silicon photonic waveguides and devices [Invited] [J]. Photonics Research, 2018, 6(4): 254-276.
    [2] Lin H, Sun B, Ma H, et al. Review of mid-infrared on-chip integrated photonics (Invited) [J]. Infrared and Laser Engineering, 2022, 51(1): 20211111. (in Chinese)
    [3] Ma H, Yang H, Tang B, et al. Passive devices at 2 μm wavelength on 200 mm CMOS compatible silicon photonics platform [Invited] [J]. Chinese Optics Letters, 2021, 19(7): 071301.
    [4] Lambrecht A, Schmitt K. Mid-infrared gas-sensing systems and applications [C]// Mid-infrared Optoelectronics, 2020: 661-715.
    [5] Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs [J]. Nature Photonics, 2012, 6(7): 440-449. doi:  10.1038/nphoton.2012.142
    [6] Neetesh S, Alvaro C B, Hudson D, et al. Mid-IR absorption sensing of heavy water using a silicon-on-sapphire waveguide [J]. Optics Letters, 2016, 41(24): 5776-5779. doi:  10.1364/OL.41.005776
    [7] Dong L, Tittel F K, Li C, et al. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing [J]. Optics Express, 2016, 24(6): A528-A535. doi:  10.1364/OE.24.00A528
    [8] Ottonello-Briano F, Errando-herranz C, Rdjegrd H, et al. Carbon dioxide absorption spectroscopy with a mid-infrared silicon photonic waveguide [J]. Optics Letters, 2019, 45(1): 109-112.
    [9] Wang Y, Shu H, Han X. High-precision silicon-based integrated optical temperature sensor [J]. Chinese Optics, 2021, 14(6): 1355-1361. (in Chinese) doi:  10.37188/CO.2021-0054
    [10] Rodrigo D, Limaj O, Janner D, et al. Mid-infrared plasmonic biosensing with graphene [J]. Science, 2015, 349(6244): 165-168. doi:  10.1126/science.aab2051
    [11] Moser H, Pölz W, Waclawek J P, et al. Implementation of a quantum cascade laser-based gas sensor prototype for sub-ppmv H2S measurements in a petrochemical process gas stream [J]. Analytical and Bioanalytical Chemistry, 2016, 409: 729-739.
    [12] Vainio M, Halonen L. Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy [J]. Physical Chemistry Chemical Physics, 2016, 18(6): 4266-4294. doi:  10.1039/C5CP07052J
    [13] Kim S. Novel air temperature measurement using midwave hyperspectral Fourier transform infrared imaging in the carbon dioxide absorption band [J]. Remote Sensing, 2020, 12(11): 1860.
    [14] Yang S, Yan X, Qin H, et al. Mid-infrared compressive hyperspectral imaging [J]. Remote Sensing, 2021, 13(4): 741.
    [15] Stanley R. Plasmonics in the mid-infrared [J]. Nature Photon, 2012, 6: 409-411.
    [16] Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs [J]. Nature Photonics, 2019, 13(3): 158-169. doi:  10.1038/s41566-019-0358-x
    [17] Li D, Zhou H, Hui X, et al. Multifunctional chemical sensing platform based on dual-resonant infrared plasmonic perfect absorber for on-chip detection of poly (ethyl cyanoacrylate) [J]. Advanced Science, 2021, 8(20): 2101879.
    [18] Henderson B, Khodabakhsh A, Metsälä M, et al. Laser spectroscopy for breath analysis: towards clinical implementation [J]. Applied Physics B, 2018, 124(8): 161. doi:  10.1007/s00340-018-7030-x
    [19] Soref R. Mid-infrared photonics in silicon and germanium [J]. Nature Photonics, 2010, 4(8): 495-497. doi:  10.1038/nphoton.2010.171
    [20] Chen Q, Nan X, Liang W, et al. Research progress of on-chip integrated optical sensing technology (Invited) [J]. Infrared and Laser Engineering, 2022, 51(1): 20210671. (in Chinese)
    [21] Mashanovich G Z, Mitchell C J, Penades J S, et al. Germanium mid-infrared photonic devices [J]. Journal of Lightwave Technology, 2017, 35(4): 624-630. doi:  10.1109/JLT.2016.2632301
    [22] Lin P T, Jung H, Kimerling L C, et al. Low-loss aluminium nitride thin film for mid-infrared microphotonics [J]. Laser & Photonics Reviews, 2014, 8(2): L23-L28.
    [23] Ma P, Choi D-Y, Yu Y, et al. Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared [J]. Optics Express, 2013, 21(24): 29927-29937. doi:  10.1364/OE.21.029927
    [24] Lin H, Song Y, Huang Y, et al. Chalcogenide glass-on-graphene photonics [J]. Nature Photonics, 2017, 11(12): 798-805. doi:  10.1038/s41566-017-0033-z
    [25] Mizaikoff B. Waveguide-enhanced mid-infrared chem/bio sensors [J]. Chemical Society Reviews, 2013, 42: 8683-8699.
    [26] Hu T, Dong B, Luo X, et al. Silicon photonic platforms for mid-infrared applications [Invited] [J]. Photonics Research, 2017, 5(5): 417-430. doi:  10.1364/PRJ.5.000417
    [27] Liu X, Cheng S, Liu H, et al. A survey on gas sensing technology [J]. Sensors, 2012, 12: 9635-9665. doi:  10.3390/s120709635
    [28] Jane H, Ralph P T. Optical gas sensing: A review [J]. Measurement Science & Technology, 2013, 24(1): 012004.
    [29] Dinh T V, Choi I Y, Son Y S, et al. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction [J]. Sensors and Actuators, B Chemical, 2016, 231: 529-538.
    [30] Cetin A E, Coskun A, Galarreta B C, et al. Handheld high-throughput plasmonic biosensor using computational on-chip imaging [J]. Light: Science & Applications, 2014, 3(1): e122.
    [31] Brolo A. Plasmonics for future biosensors [J]. Nature Photonics, 2012, 6(11): 709-713. doi:  10.1038/nphoton.2012.266
    [32] Tombez L, Zhang E J, Orcutt J S, et al. Methane absorption spectroscopy on a silicon photonic chip [J]. Optica, 2017, 4(11): 1322-1325. doi:  10.1364/OPTICA.4.001322
    [33] Jágerská J, Jouy P, Tuzson B, et al. Simultaneous measurement of NO and NO2 by dual-wavelength quantum cascade laser spectroscopy [J]. Optics Express, 2015, 23(2): 1512-1522. doi:  10.1364/OE.23.001512
    [34] Schwarz B, Reininger P, Ristanić D, et al. Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures [J]. Nature Communications, 2014, 5(1): 4085. doi:  10.1038/ncomms5085
    [35] Shankar R, Leijssen R, Bulu I, et al. Mid-infrared photonic crystal cavities in silicon [J]. Optics Express, 2011, 19(6): 5579-5586. doi:  10.1364/OE.19.005579
    [36] Liu Q, Ramirez J M, Vakarin V, et al. Mid-infrared sensing between 5.2 and 6.6 µm wavelengths using Ge-rich SiGe waveguides [Invited] [J]. Optical Materials Express, 2018, 8(5): 1305-1312. doi:  10.1364/OME.8.001305
    [37] Li W, Anantha P, Lee K H, et al. Spiral waveguides on germanium-on-silicon nitride platform for mid-IR sensing applications [J]. IEEE Photonics Journal, 2018, 10(3): 1-7.
    [38] Kang J, Takenaka M, Takagi S. Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits [J]. Optics Express, 2016, 24(11): 11855-11864. doi:  10.1364/OE.24.011855
    [39] Xiao T-H, Zhao Z, Zhou W, et al. Mid-infrared high-Q germanium microring resonator [J]. Optics Letters, 2018: 43(12): 2885-2888.
    [40] WU J, YUE G, CHEN W, et al. On-chip optical gas sensors based on group-IV materials [J]. ACS Photonics, 2020, 7(11): 2923-2940. doi:  10.1021/acsphotonics.0c00976
    [41] Wang C, Yin L, Zhang L, et al. Metal oxide gas sensors: Sensitivity and influencing factors [J]. Sensors, 2010, 10(3): 2088-2106.
    [42] Chang Y-c, Wägli P, Paeder V, et al. Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip [J]. Lab on a Chip, 2012, 12(17): 3020-3023. doi:  10.1039/c2lc40601b
    [43] Lin P, Singh V, Hu J, et al. Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides [J]. Lab on a Chip, 2013: 13(11): 2161-2166.
    [44] Zou Y, Vijayraghavan K, Wray P, et al. Monolithically integrated quantum cascade lasers, detectors and dielectric waveguides at 9.5µm for far-infrared lab-on-chip chemical sensing[C]//Proceedings of the CLEO, 2015: STu4I.2.
    [45] Hale G M, Querry M R. Optical constants of water in the 200-nm to 200-microm wavelength region [J]. Applied Optics, 1973, 12(3): 555-563. doi:  10.1364/AO.12.000555
    [46] Nedeljkovic M, Khokhar A Z, Hu Y, et al. Silicon photonic devices and platforms for the mid-infrared [J]. Optical Materials Express, 2013, 3(9): 1205-1214. doi:  10.1364/OME.3.001205
    [47] Penades J S, Khokhar A, Nedeljkovic M, et al. Low-loss mid-infrared SOI slot waveguides [J]. IEEE Photonics Technology Letters, 2015, 27(11): 1197-1199.
    [48] Lin P T, Kwok S W, Lin H Y G, et al. Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing [J]. Nano Letters, 2014, 14(1): 231-238.
    [49] Patimisco P, Spagnolo V, Vitiello M S, et al. Low-loss hollow waveguide fibers for mid-infrared quantum cascade laser sensing applications [J]. Sensors, 2013, 13(1): 1329-1340. doi:  10.3390/s130101329
    [50] Zheng S, Cai H, Xu L, et al. Silicon substrate-integrated hollow waveguide for miniaturized optical gas sensing [J]. Photonics Research, 2022, 10(1): 261-268. doi:  10.1364/PRJ.439434
    [51] Petruci J, Wilk A, Cardoso A A, et al. A hyphenated preconcentrator-infrared-hollow-waveguide sensor system for N2O sensing [J]. Scientific Reports, 2018, 8(1): 5909.
    [52] Vasiliev A, Malik A, Muneeb M, et al. On-chip mid-infrared photothermal spectroscopy using suspended silicon-on-insulator microring resonators [J]. ACS Sensors, 2016, 1(11): 1301-1307.
    [53] Mario L N, Benedetto T, Tommaso M, et al. Recent advances in gas and chemical detection by Vernier effect-based photonic sensors [J]. Sensors, 2014, 14(3): 4831-4855.
    [54] Jin L, Li M, He J J. Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect [J]. Optics Communications, 2011, 284(1): 156-159. doi:  10.1016/j.optcom.2010.08.035
    [55] Ren L, Wu X, Li M, et al. Ultrasensitive label-free coupled optofluidic ring laser sensor [J]. Optics Letters, 2012, 37(18): 3873-3875. doi:  10.1364/OL.37.003873
    [56] Yebo N A, Lommens P, Hens Z, et al. An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film [J]. Optics Express, 2010, 18(11): 11859-11866. doi:  10.1364/OE.18.011859
    [57] Stievater T H, Pruessner M W, Park D, et al. Trace gas absorption spectroscopy using functionalized microring resonators [J]. Optics Letters, 2014, 39(4): 969-972. doi:  10.1364/OL.39.000969
    [58] Troia B, Khokhar A Z, Nedeljkovic M, et al. Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared [J]. Optics Express, 2014, 22(20): 23990-24003.
    [59] Chang Y, Dong B, Ma Y, et al. Vernier effect-based tunable mid-infrared sensor using silicon-on-insulator cascaded rings [J]. Optics Express, 2020, 28(5): 6251-6260.
    [60] Carlborg C F, Gylfason K B, Kamierczak A, et al. A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips [J]. Lab on a Chip, 2010, 10(3): 281-290. doi:  10.1039/B914183A
    [61] Ksendzov A, Lin Y. Integrated optics ring-resonator sensors for protein detection [J]. Optics Letters, 2005, 30(24): 3344-3346. doi:  10.1364/OL.30.003344
    [62] Smith C J, Shankar R, Laderer M, et al. Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators [J]. Optics Express, 2015, 23(5): 5491-5499. doi:  10.1364/OE.23.005491
    [63] Chen Y, Lin H, Hu J, et al. Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing [J]. ACS Nano, 2014, 8(7): 6955-6961. doi:  10.1021/nn501765k
    [64] Lai W-C, Chakravarty S, Wang X, et al. Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water [J]. Applied Physics Letters, 2011, 98: 023304.
    [65] Lai W-C, Chakravarty S, Zou Y, et al. Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy [J]. Optics Letters, 2013, 38(19): 3799-3802. doi:  10.1364/OL.38.003799
    [66] Lai W-C, Chakravarty S, Wang X, et al. On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide [J]. Optics Letters, 2011, 36(6): 984-986. doi:  10.1364/OL.36.000984
    [67] Iqbal M, Gleeson M A, Spaugh B, et al. Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(3): 654-661. doi:  10.1109/JSTQE.2009.2032510
    [68] Skivesen N, Têtu A, Kristensen M, et al. Photonic-crystal waveguide biosensor [J]. Optics Express, 2007, 15(6): 3169-3176. doi:  10.1364/OE.15.003169
    [69] Chakravarty S, Zou Y, Yan H, et al. Silicon chip integrated photonic sensors for biological and chemical sensing [C]//SPIE, 2016.
    [70] Kraeh C, Martinez Hurtado J L, Popescu A, et al. Slow light enhanced gas sensing in photonic crystals [J]. Optical Materials, 2018, 76: 106-110. doi:  10.1016/j.optmat.2017.12.024
    [71] Zou Y, Chakravarty S, Wray P, et al. Experimental demonstration of propagation characteristics of mid-infrared photonic crystal waveguides in silicon-on-sapphire [J]. Optics Express, 2015, 23(5): 6965-6975.
    [72] Zou Y, Chakravarty S, Chen R T. Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities [J]. Applied Physics Letters, 2015, 107(8): 081109.
    [73] Zou Y, Chakravarty S, Wray P, et al. Mid-infrared holey and slotted photonic crystal waveguides in silicon-on-sapphire for chemical warfare simulant detection [J]. Sensors and Actuators B:Chemical, 2015, 221: 1094-1103. doi:  10.1016/j.snb.2015.07.061
    [74] Rostamian A, Madadi-kandjani E, Dalir H, et al. Towards lab-on-chip ultrasensitive ethanol detection using photonic crystal waveguide operating in the mid-infrared [J]. Nanophotonics, 2021, 10(6): 1675-1682. doi:  10.1515/nanoph-2020-0576
    [75] Nazabal V, Baudet E, Chahal R, et al. Chalcogenide glasses for mid-IR photonic applications [C]//2014 IEEE Photonics Society Summer Topical Meeting Series, 2014.
    [76] Mittal V, Nedeljkovic M, Rowe D J, et al. Chalcogenide glass waveguides with paper-based fluidics for mid-infrared absorption spectroscopy [J]. Optics Letters, 2018, 43(12): 2913-2916. doi:  10.1364/OL.43.002913
    [77] Gutierrez-arroyo A, Baudet E, Bodiou L, et al. Optical characterization at 7.7 µm of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared [J]. Optics Express, 2016, 24(20): 23109-23117. doi:  10.1364/OE.24.023109
    [78] Baudet E, Gutierrez-arroyo A, Baillieul M, et al. Development of an evanescent optical integrated sensor in the mid-infrared for detection of pollution in groundwater or seawater [J]. Advanced Device Materials, 2017, 3(2): 23-29.
    [79] Lin P T, Jung H, Kimerling L C, et al. Low-loss aluminium nitride thin film for mid-infrared microphotonics [J]. Laser & Photonics Reviews, 2014, 8(2): L23-L28.
    [80] Jung H, Poot Menno, Tang H X. In-resonator variation of waveguide cross-sections for dispersion control of aluminum nitride micro-rings [J]. Optics Express, 2015, 23(24): 30634-30640.
    [81] Pernice W, Xiong C, Schuck C, et al. High-Q aluminum nitride photonic crystal nanobeam cavities [J]. Applied Physics Letters, 2012, 100(9): 091105. doi:  10.1063/1.3690888
    [82] Dong B, Luo X, Zhu S, et al. Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics [J]. Optics Letters, 2019, 44(1): 73-76. doi:  10.1364/OL.44.000073
    [83] Belt M, Davenport M L, Bowers J E, et al. Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates [J]. Optica, 2017, 4(5): 532-536. doi:  10.1364/OPTICA.4.000532
    [84] Muttalib M F A, Chen R, Pearce S, et al. Anisotropic Ta2O5 waveguide etching using inductively coupled plasma etching [J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 2014, 32: 041304.
    [85] Vlk M, Datta A, Alberti S, et al. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy [J]. Light: Science & Applications, 2021, 10(1): 26.
    [86] Chaneliere C, Autran J L, Devine R A B, et al. Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications [J]. Materials Science and Engineering: R: Reports, 1998, 22(6): 269-322. doi:  10.1016/S0927-796X(97)00023-5
    [87] Lee C C, Tien C L, Sheu W S, et al. An apparatus for the measurement of internal stress and thermal expansion coefficient of metal oxide films [J]. Review of Scientific Instruments, 2001, 72(4): 2128-2133. doi:  10.1063/1.1357228
    [88] Wu C-L, Hung Y, Fan R, et al. Tantalum pentoxide (Ta2O5) based athermal micro-ring resonator [J]. OSA Continuum, 2019, 2(4): 1198-1206. doi:  10.1364/OSAC.2.001198
    [89] Saygin-Hinczewski D, Koc K, Sorar I, et al. Optical and structural properties of Ta2O5–CeO2 thin films [J]. Solar Energy Materials and Solar Cells, 2007, 91(18): 1726-1732. doi:  10.1016/j.solmat.2007.05.029
    [90] Pi M, Zheng C, Zhao H, et al. Mid-infrared ChG-on-MgF2 waveguide gas sensor based on wavelength modulation spectroscopy [J]. Optics Letters, 2021, 46(19): 4797-4800.
    [91] Li C, Zheng C, Dong L, et al. Ppb-level mid-infrared ethane detection based on three measurement schemes using a 3.34-μm continuous-wave interband cascade laser [J]. Applied Physics B, 2016, 122(7): 185.
    [92] Jin T, Lin H, Tiwald T, et al. Flexible mid-infrared photonic circuits for real-time and label-free hydroxyl compound detection [J]. Scientific Reports, 2019, 9(1): 4153.
    [93] Chang C, Lin H, Lai M, et al. Flexible localized surface plasmon resonance sensor with metal-insulator-metal nanodisks on PDMS substrate [J]. Scientific Reports, 2018, 8: 11812.
    [94] Neutens P, Lagae L, Borghs G, et al. Plasmon filters and resonators in metal-insulator-metal waveguides [J]. Optics Express, 2012, 20(4): 3408-3423. doi:  10.1364/OE.20.003408
    [95] Wei Q, Xiao J, Yang D, et al. Ultra-compact electro-optic modulator based on alternative plasmonic material [J]. Appled Optics, 2021, 60(17): 5252-5257. doi:  10.1364/AO.425679
    [96] Ansell D, Radko I P, Han Z, et al. Hybrid graphene plasmonic waveguide modulators [J]. Nature Communications, 2015, 6(1): 8846. doi:  10.1038/ncomms9846
    [97] Zhang T, Shan F. Development and application of surface plasmon polaritons on optical amplification [J]. Journal of Nanomaterials, 2014, 7: 7-16.
    [98] Izadi M A, Nouroozi R. Adjustable propagation length enhancement of the surface plasmon polariton wave via phase sensitive optical parametric amplification [J]. Scientific Reports, 2018, 8(1): 15495. doi:  10.1038/s41598-018-33831-y
    [99] Kang T, Fan B, Qin J, et al. Mid-infrared active metasurface based on Si/VO2 hybrid meta-atoms [J]. Photonics Research, 2022, 10(2): 373-380. doi:  10.1364/PRJ.445571
    [100] Adato R, Altug H. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas [J]. Nature Communications, 2013, 4: 2154.
    [101] Limaj O, Etezadi D, Wittenberg N J, et al. Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes [J]. Nano Letters, 2016, 16(2): 1502-1508. doi:  10.1021/acs.nanolett.5b05316
    [102] Zhou H, Hui X, Li D, et al. Metal-organic framework‐surface‐enhanced infrared absorption platform enables simultaneous on‐chip sensing of greenhouse gases [J]. Advanced Science, 2020: 7(20): 2001173.
    [103] Wei J, Li Y, Chang Y, et al. Ultrasensitive transmissive infrared spectroscopy via loss engineering of metallic nanoantennas for compact devices [J]. ACS Appl Mater Interfaces, 2019, 11(50): 47270-47278. doi:  10.1021/acsami.9b18002
    [104] Xu J, Ren Z, Dong B, et al. Nanometer-scale heterogeneous interfacial sapphire wafer bonding for enabling plasmonic-enhanced nanofluidic mid-infrared spectroscopy [J]. ACS Nano, 2020, 14(9): 12159-12172. doi:  10.1021/acsnano.0c05794
    [105] Chang Y, Hasan D, Dong B, et al. All-dielectric surface-enhanced infrared absorption-based gas sensor using guided resonance [J]. ACS Appl Mater Interfaces, 2018, 10(44): 38272-38279. doi:  10.1021/acsami.8b16623
    [106] Neubrech F, Pucci A, Cornelius T W, et al. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection [J]. Physical Review Letters, 2008, 101(15): 157403.
    [107] Cho N J, Frank C W, Kasemo B, et al. Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates [J]. Nature Protocols, 2010, 5(6): 1096-1106. doi:  10.1038/nprot.2010.65
    [108] Rodrigo D, Tittl A, Ait-bouziad N, et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces [J]. Nature Communications, 2018, 9(1): 2160. doi:  10.1038/s41467-018-04594-x
    [109] Maß T W W, Taubner T. Incident angle-tuning of infrared antenna array resonances for molecular sensing [J]. ACS Photonics, 2015, 2(10): 1498-1504. doi:  10.1021/acsphotonics.5b00399
    [110] Agrawal A, Singh A, Yazdi S, et al. Resonant coupling between molecular vibrations and localized surface plasmon resonance of faceted metal oxide nanocrystals [J]. Nano Letters, 2017, 17(4): 2611-2620. doi:  10.1021/acs.nanolett.7b00404
    [111] Baumberg J J, Aizpurua J, Mikkelsen M H, et al. Extreme nanophotonics from ultrathin metallic gaps [J]. Nature Materials, 2019, 18(7): 668-678. doi:  10.1038/s41563-019-0290-y
    [112] Akselrod G M, Argyropoulos C, Hoang T B, et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas [J]. Nature Photonics, 2014, 8(11): 835-840.
    [113] Chen X, Wang C, Yao Y, et al. Plasmonic vertically coupled complementary antennas for dual-mode infrared molecule sensing [J]. Acs Nano, 2017, 11(8): 8034-8046.
    [114] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor [J]. Nano Lett, 2010, 10(7): 2342-2348. doi:  10.1021/nl9041033
    [115] Brown L V, Yang X, Zhao K, et al. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA) [J]. Nano Letters, 2015, 15(2): 1272-1280. doi:  10.1021/nl504455s
    [116] Dong L, Yang X, Zhang C, et al. Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy [J]. Nano Letters, 2017: 17(9): 5768–5774.
    [117] Miao X, Lingyue Y, Wu Y, et al. High-sensitivity nanophotonic sensors with passive trapping of analyte molecules in hot spots [J]. Light: Science and Applications, 2021, 10(1): 5.
    [118] Chen J, Xiong Y, Xu F, et al. Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology [J]. Light:Science & Applications, 2021, 10 (1): 78.
    [119] Zhu Y, Li Z, Hao Z, et al. Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface [J]. Light: Science & Applications, 2018, 7(1): 67.
    [120] Yang Z, Albrow-Owen T, Cai W, et al. Miniaturization of optical spectrometers [J]. Science, 2021, 371(6528): eabe0722. doi:  10.1126/science.abe0722
    [121] Mishchenko M I, Hovenier J W. Depolarization of light backscattered by randomly oriented nonspherical particles [J]. Optics Letters, 1995, 20(12): 1356-1358. doi:  10.1364/OL.20.001356
    [122] Naumann D, Helm D, Labischinski H. Microbiological characterizations by FT-IR spectroscopy [J]. Nature, 1991, 351(6321): 81-82. doi:  10.1038/351081a0
    [123] Rosema A. Potential of chlorophyll fluorescence for remote sensing of canopy photosynthesis[C]//Proceedings of the Proc OECD Workshop on Remote Sensing for Agriculture for the Environment, 2002.
    [124] Lavchiev V M, Jakoby B. Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 23(2): 452-463.
    [125] Hasan M, Rad M, Hasan G M, et al. Ultra-high resolution wideband On-chip spectrometer [J]. IEEE Photonics Journal, 2020, 12(5): 1-17.
    [126] Manley M. Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials [J]. Chemical Society Reviews, 2014, 43(24): 8200-8214. doi:  10.1039/C4CS00062E
    [127] Ouzounov D, Freund F. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data [J]. Advances in Space Research, 2004, 33(3): 268-273. doi:  10.1016/S0273-1177(03)00486-1
    [128] Kita D M, Miranda B, Favela D, et al. High-performance and scalable on-chip digital Fourier transform spectroscopy [J]. Nature Communications, 2018, 9 (1): 4405.
    [129] Li A, Fainman Y. Integrated silicon Fourier transform spectrometer with broad bandwidth and ultra‐high resolution [J]. Laser & Photonics Reviews, 2021, 15(4): 2000358.
    [130] Lin Z, Dadalyan T, Bélanger-de Villers S, et al. Chip-scale full-Stokes spectropolarimeter in silicon photonic circuits [J]. Photonics Research, 2020, 8(6): 864-874. doi:  10.1364/PRJ.385008
    [131] Xia Z, Eftekhar A A, Soltani M, et al. High resolution on-chip spectroscopy based on miniaturized microdonut resonators [J]. Optics Express, 2011, 19(13): 12356-12364. doi:  10.1364/OE.19.012356
    [132] Sarwar T, Cheekati S, Chung K, et al. On-chip optical spectrometer based on GaN wavelength-selective nanostructural absorbers [J]. Applied Physics Letters, 2020, 116(8): 081103. doi:  10.1063/1.5143114
    [133] Dinh T T D, González-Andrade D, Montesinos-Ballester M, et al. Silicon photonic on-chip spatial heterodyne Fourier transform spectrometer exploiting the Jacquinot's advantage [J]. Optics Letters, 2021, 46(6): 1341-1344.
    [134] González-Andrade D, Dinh T T D, Guerber S, et al. Broadband Fourier-transform silicon nitride spectrometer with wide-area multiaperture input [J]. Optics Letters, 2021, 46(16): 4021-4024. doi:  10.1364/OL.438361
    [135] Liu T, Fiore A. Designing open channels in random scattering media for on-chip spectrometers [J]. Optica, 2020, 7(8): 934-939. doi:  10.1364/OPTICA.391612
    [136] Yuan S, Naveh D, Watanabe K, et al. A wavelength-scale black phosphorus spectrometer [J]. Nature Photonics, 2021, 15(8): 601-607. doi:  10.1038/s41566-021-00787-x
    [137] Lee H S, Hwang G W, Seong T Y, et al. Design of mid-infrared filter array based on plasmonic metal nanodiscs array and its application to on-chip spectrometer [J]. Scientific Reports, 2021, 11(1): 12218. doi:  10.1038/s41598-021-91762-7
    [138] Zhang L, Chen J, Ma C, et al. Research progress on on‐chip Fourier transform spectrometer [J]. Laser & Photonics Reviews, 2021, 15(9): 2100016.
    [139] Florjańczyk M, Cheben P, Janz S, et al. Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers [J]. Optics Express, 2007, 15(26): 18176-18189. doi:  10.1364/OE.15.018176
    [140] Nedeljkovic M, Velasco A V, Khokhar A Z, et al. Mid-infrared silicon-on-insulator fourier-transform spectrometer chip [J]. IEEE Photonics Technology Letters, 2016, 28(4): 528-531. doi:  10.1109/LPT.2015.2496729
    [141] Heidari E, Xu X, Chung C-J, et al. On-chip Fourier transform spectrometer on silicon-on-sapphire [J]. Optics Letters, 2019, 44(11): 2883-2886.
    [142] Liu Q, Ramirez J M, Vakarin V, et al. Integrated broadband dual-polarization Ge-rich SiGe mid-infrared Fourier-transform spectrometer [J]. Optics Letters, 2018, 43(20): 5021-5024. doi:  10.1364/OL.43.005021
    [143] Montesinos-Ballester M, Liu Q, Vakarin V, et al. On-chip Fourier-transform spectrometer based on spatial heterodyning tuned by thermo-optic effect [J]. Scientific Reports, 2019, 9(1): 14633. doi:  10.1038/s41598-019-50947-x
    [144] Fathy A, Sabry Y M, Nazeer S, et al. On-chip parallel Fourier transform spectrometer for broadband selective infrared spectral sensing [J]. Microsystems & Nanoengineering, 2020, 6 (1): 10. doi:  10.1038/s41378-019-0111-0
    [145] KEIlmann F, Gohle C, Holzwarth R. Time-domain mid-infrared frequency-comb spectrometer [J]. Optics Letters, 2004, 29(13): 1542-1544. doi:  10.1364/OL.29.001542
    [146] Picqué N, Hänsch T W. Frequency comb spectroscopy [J]. Nature Photonics, 2019, 13(3): 146-157. doi:  10.1038/s41566-018-0347-5
    [147] Coddington I, Newbury N, Swann W. Dual-comb spectroscopy [J]. Optica, 2016, 3(4): 414-426. doi:  10.1364/OPTICA.3.000414
    [148] Del’haye P, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a monolithic microresonator [J]. Nature, 2007, 450(7173): 1214-1217. doi:  10.1038/nature06401
    [149] Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators [J]. Science , 2018, 361(6402): eaan8083. doi:  10.1126/science.aan8083
    [150] Yu M, Okawachi Y, Griffith A G, et al. Silicon-chip-based mid-infrared dual-comb spectroscopy [J]. Nature Communications, 2018, 9(1): 1869. doi:  10.1038/s41467-018-04350-1
    [151] Lin T, Dutt A, Joshi C, et al. Broadband ultrahigh-resolution chip-scale scanning soliton dual-comb spectroscopy [J]. arXiv preprint, 2020: 200100869.
    [152] Rogalski A. HgCdTe photodetectors [C]//Mid-infrared Optoelectronics, 2020: 235-335.
    [153] Steenbergen E H. InAsSb-based photodetectors [C]//Mid-infrared Optoelectronics, 2020: 415-453.
    [154] Liu C, Guo J, Yu L, et al. Silicon/2D-material photodetectors: from near-infrared to mid-infrared [J]. Light: Science & Applications, 2021, 10(1): 123. doi:  10.1038/s41377-021-00551-4
    [155] Du W, Yu S-Q. Group IV photonics using (Si)GeSn technology toward mid-IR applications [C]//Mid-infrared Optoelectronics, 2020: 493-538.
    [156] Chen J, Wang J, Li X, et al. Recent progress in improving the performance of infrared photodetectors via optical field manipulations [J]. Sensors, 2022, 22(2): 677.
    [157] Carmody M, Pasko J G, Edwall D, et al. Status of LWIR HgCdTe-on-silicon FPA technology [J]. Journal of Electronic Materials, 2008, 37(9): 1184-1188. doi:  10.1007/s11664-008-0434-3
    [158] Dhar N K, Tidrow M Z. Large-format IRFPA development on silicon[C]//SPIE, 2004: 5564.
    [159] Wu J, Jiang Q, Chen S, et al. Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates [J]. ACS Photonics, 2016, 3(5): 749-753. doi:  10.1021/acsphotonics.6b00076
    [160] Jia B W, Tan K H, Loke W K, et al. Monolithic integration of insb photodetector on silicon for mid-infrared silicon photonics [J]. ACS Photonics, 2018, 5(4): 1512-1520. doi:  10.1021/acsphotonics.7b01546
    [161] Delli E, Letka V, Hodgson P D, et al. Mid-Infrared InAs/InAsSb superlattice nBn photodetector monolithically integrated onto silicon [J]. ACS Photonics, 2019, 6(2): 538-544. doi:  10.1021/acsphotonics.8b01550
    [162] Wu E, Wu D, Jia C, et al. In situ fabrication of 2 D WS2/Si type-II Heterojunction for self-powered broadband photodetector with response up to mid-infrared [J]. ACS Photonics, 2019, 6(2): 565-572. doi:  10.1021/acsphotonics.8b01675
    [163] Cong H, Xue C, Zheng J, et al. Silicon based GeSn p-i-n photodetector for SWIR detection [J]. IEEE Photonics Journal, 2016, 8(5): 1-6.
    [164] Tran H, Pham T, Margetis J, et al. Si-based GeSn photodetectors toward mid-infrared imaging applications [J]. ACS Photonics, 2019, 6(11): 2807-2815. doi:  10.1021/acsphotonics.9b00845
    [165] Wang X, Cheng Z, Xu K, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors [J]. Nature Photonics, 2013, 7(11): 888-891. doi:  10.1038/nphoton.2013.241
    [166] Qu Z, Nedeljkovic M, Wu Y, et al. Waveguide integrated graphene mid-infrared photodetector[C]//SPIE, 2018: 10537.
    [167] Huang L, Dong B, Guo X, et al. Waveguide-integrated black phosphorus photodetector for mid-infrared applications [J]. ACS Nano, 2019, 13(1): 913-921. doi:  10.1021/acsnano.8b08758
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)  / Tables(6)

Article Metrics

Article views(770) PDF downloads(245) Cited by()

Related
Proportional views

Advances in mid-infrared integrated photonic sensing system (Invited)

doi: 10.3788/IRLA20220104
  • 1. School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 2. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 201210, China
  • 3. University of Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  National Natural Science Foundation of China (61705099);Natural Science Foundation of Shanghai(21ZR1443100)

Abstract: In recent years, mid-infrared (wavelength range of 2–20 μm) integrated photonics has received a lot of attention for its potential applications, including absorption spectroscopy, thermal imaging, and free-space communication. The mid-infrared, which includes several atmospheric transparency windows, has an inherent advantage for sensing applications. The mid-infrared photonic devices also benefit from the mature technologies developed in the near-infrared for device design, test, and fabrication. In addition, integrated photonic sensors have demonstrated comparable sensitivity to their bulk counterparts, while featuring low power consumption, low cost, compact structure, and easy integration with other devices. Therefore, the mid-infrared integrated photonic sensors will play an important role in industrial detection, scientific research, medical diagnosis, military security, life, and other fields in the future. Here, Recent advances in the mid-infrared integrated photonic sensors have been reviewed. Three major components, sensing unit, spectrometer, and detector were discussed. An outlook for its future development was also proposed.

    • 中红外(Mid-infrared,MIR)主要指波长范围覆盖了2~20 μm[1-2]的波段,目前相关应用已经在工业检测[3-5]、安全保护[6]、环境检测[7-9],生物医学[10]、化学分析[11]、国防军事等领域起到了重要的作用。图1所示为常见气体吸收谱[12]。大气中水的含量很高,而在3~5 μm和8~12 μm波段,水对光的吸收率明显可见很小[3-5],因此该波段被认为是大气的透明窗口,是高光谱成像[13-14]和遥感[13]的常用波段。例如,可以利用在中红外具有光吸收的性质实现可视化温度测量[13]。除CO2外,其他主要的有害气体也会由于其分子振动,吸收特定中红外波长的光波,如CO (4.5 μm)、CH4 (3.25~3.45 μm)、HF (2.33~2.78 μm)、SO2 (7.14~7.52 μm)等,由此中红外波段也被称为“分子指纹区”[1, 4, 15]。除了中红外具有可以用于气体吸收检测的优势外,其主要传导材料硅在中红外还具有直到>8 μm波长范围均保持透明的优良性质。同时,由于硅在中红外波段的双光子吸收较低,能够实现更高的功率密度,因此中红外硅基平台也是对很多非线性器件较为友好的研究平台。很多基于非线性效应的应用,如片上光频梳[16]等,都可以在传感领域发挥不可小觑的作用。此外,在工业[17]和医学[18]等应用场景中,需要大量低成本,高精度,紧凑和低功耗的传感系统。硅材料作为CMOS工艺兼容的主要材料,有着较为成熟的生产线和较低的加工成本,为批量生产小型化光子集成传感系统提供了可能[19-20]。另外,基于锗[21]、氮化铝[22]、硫系玻璃[23-24]等其他材料的器件也已经在中红外传感方面展现出了许多令人兴奋的性能,这为中红外传感系统的实现提供了多种新的途径。除工艺水平的进步外,光通信在近红外波段迅猛发展使得人们对近红外集成光子学的研究愈发深入,目前研究理论和设计工具都较为成熟,很多近红外光子器件的器件结构和设计思路能够较为高效地移植至中红外波段,不仅有效地降低了设计的成本和时间,还能够在光子传感平台上得到不亚于传统仪器的技术指标,如传感灵敏度、光谱分辨率等[1]。因此,中红外片上集成光子传感系统具有重要的研究意义。

      Figure 1.  Mid-infrared absorption spectra for common gases[5]

      文中主要对中红外集成光子传感平台进行了回顾。如图2所示,片上传感系统主要分为中红外传感单元,中红外片上光谱仪和中红外集成光电探测器三个组成部分,也可单独由传感单元和集成光电探测器组成。传感单元是光-物质相互作用的直接交互单元,主要利用波导等结构的光倏逝场与物质交互带来的传输特性变化,来获取物质的信息。文中在第一部分回顾了传感单元,分别从面内、面外的传统波导型和等离激元型进行了叙述。片上集成光谱仪则是获得光谱信息的主要器件,主要通过在空间或时间维度上对交互后的光进行解析,提取关键信息。文中第二部分介绍了片上集成光谱仪的当下进展,包括滤波重建型光谱仪,空间外差傅里叶红外光谱仪和双光梳光谱仪。片上集成光电探测器则通过光电转换,将光所携带的传感信息转成为可测量读取的电信息,主要用于信号读出。文中第三部分主要介绍了当前中红外的片上探测器,分别对HgCdTe合金,III-V材料InAsSb/InSb合金,二维材料和IV族材料探测器,从面外和面内波导集成两个方面进行了回顾。最后一部分对中红外集成平台的目前优势进行了回顾总结,并对一些还需要优化解决的问题进行了未来的展望。

      Figure 2.  Mid-infrared integrated on-chip sensing system

    • 中红外光谱范围内涵盖了许多气态或液态的有机物、生物制剂的振动特征吸收峰[25-26],在这些波长处存在着强烈的光与物质相互作用,允许高选择性和高灵敏度的检测,是理想的无标记传感区域,也代表着中红外光谱在传感领域中的不可替代性。基于中红外光学的传感单元拥有高灵敏度、高选择性,响应快且长期运行稳定的特点[27-31],目前已经有单层蛋白质检测[10]、甲烷检测[32]、重水检测[6]、温室气体检测[7-8]等各类化学、环境、生物检测应用[11, 18, 33]。从传感单元的原理角度来说,在中红外光谱范围内,吸收光谱法由于能够检测光在通过分析物后产生的多个特定吸收波长处的光衰减,可以同时定性、定量解析分析物的成分,相较于其它依靠检测折射率变化的方法拥有压倒性的优势[1]。总体来说,中红外片上传感单元依据集成类型可以分为面内以及面外两种。更进一步,也可以分成使用硅、锗IV族材料和使用硫系玻璃、氮化铝等其他材料的传统波导型传感器件,以及表面等离激元共振型传感器件。

    • 在面内传感器件中,光波通常沿芯片上的波导进行传播,这样的设计有利于高度的单片集成。单片集成技术是指将所有必要的光学组件集成到一个芯片上,使传感器更加紧凑、具有更高的成本效益,能够令其被应用于缺乏实验室级检测设备的场合之中[34]。绝大部分使用硅、锗IV族材料和使用硫系玻璃、氮化铝等其他材料的传统波导型传感器件都属于面内传感器件,还有一些表面等离激元传感器件也可以归入该类型。

      (1)硅锗基IV族器件

      由于拥有较低的材料成本和成熟的加工工艺,以及优良的光学电学性能和机械性能,硅在迄今数十年间一直占据光电子行业的主导地位,具有易于与硅基电子器件相集成的优势。由于许多化合物的基本振动特征吸收峰都在中红外波段,所以在该波段的吸收强度比在近红外波段的高阶信号大两个数量级[19, 35],而硅在从1.1~8 μm范围内都是透明的,可以覆盖整个3~5 μm的大气窗,因此仍是一种理想的材料。锗具有很高的折射率(在2 μm处为4.1),在几乎整个中红外范围内都有很高的透明度,是一种优秀的中红外光传输材料。锗材料的引入为硅片上的激光器和探测器创造了新的思路[36-37],且硅锗集成技术相较而言更加简单,与CMOS工艺兼容,令在片上同时集成有源、无源器件变为可行[38-40]

      光学传感器相较于电化学传感器具有高选择性、快速响应等优点[41]。不过传统自由空间光传感器的尺寸大、功耗高,相比之下,基于介质波导的传感器更能满足小型化、低功耗的要求[8]。介质波导是最基础的光子器件,与金属波导不同,介质波导不能产生100%的光学束缚,在波导外侧不可避免会产生倏逝场。基于波导的传感器就是利用倏逝场和外界物质相互作用而影响最终光学传输特性来实现的。2012年,Yu-Chi Chang等[42]设计了一种硅衬底上基于锗条形波导的中红外传感器,用于检测可卡因,如图3(a)所示。该传感器首次将锗条形波导与微流控芯片(Microfluidic chip)集成,检测光波长为5.8 μm,与可卡因的吸收峰重叠。实验中成功检测出最低浓度为100 μg/mL的四氯乙烯溶液中的可卡因,证明其具备在人类唾液中检测可卡因的潜力。2013年,Pao Tai Lin等[43]设计了一种基于空气包层硅基座波导的中红外传感器,可以用于进行实时化学检测和化合物识别。理论中可以支持从1.3~6.5 μm范围内的化学键特征吸收检测。该硅基座波导由纯硅衬底刻蚀而成,如图3(b)所示,克服了传统绝缘体上硅(Silicon-on-insulator,SOI)平台由埋氧层带来的光学带宽受限问题。在实验中,该探测器通过使用3.3 μm的光源能够读取甲苯/四氯化碳的比率,使用3.55 μm的光源可以轻松区分包括甲醇、甲苯、乙烷、四氯化碳和丙酮的有机溶剂。2015年,Yi Zou等[44]设计了基于锗波导的传感器,如图3(c)所示。该传感器在单片上集成了量子级联激光器(Quantum cascade laser,QCL)、锗波导和量子级联探测器(Quantum cascade detector,QCD),可以在9.5 μm波长进行异丙醇、甲醇及三乙基磷酸盐(Triethylphosphate,TEP)检测。2016年,Neetesh Singh等[6]展示了一种蓝宝石上的硅(Silicon-on-sapphire,SOS)平台基于条形硅波导的传感器,用于检测诸如重水等有极强中红外光吸收性能的液体,如图3(d)所示。其中,支持多模的条形波导被加宽至3 μm,用来减少由于侧壁粗糙度的相互作用带来的基模传播损耗。由于在4 μm左右,重水的吸收系数为18 000 cm−1,具有极强的光吸收性[45],为了防止光波在传播过程中被波导外包裹的重水完全吸收,一层1.2 μm的二氧化硅被沉积于波导顶部,来降低光与分析物97.7%的相互作用,使得仍然有一部分光能继续传输下去。在重水检测实验中,在3.96 μm成功实现最小浓度为2500 ppmv的重水混合在水中的检测。2020年,Floria Ottonello-Briano等[8]设计了在4.24 μm波长具有高性能指标(Figure of merit,FOM)的悬空硅波导,通过与多模干涉(Multi-mode interference,MMI)分束器结合,充分利用二氧化碳在4.26 μm附近与环境空气中其它常见气体不重叠的强烈孤立吸收峰特点,实现了高灵敏度的片上二氧化碳检测,具有尺寸小、功耗低的特点。如图3(e)所示,该中红外硅波导悬空于硅基底上方3 μm,并由锥形二氧化硅支柱支撑。由于波导没有下包层且与基底分离甚远,衬底的材料吸收和泄漏损失可以被忽略,光与分析物之间的相互作用面积也得到进一步增强。这样的设计提高了传感器的FOM,实现了0.1%浓度的二氧化碳光学检测。

      Figure 3.  Mid-IR waveguide sensing units. (a) The germanium strip waveguide designed by Yu-Chi Chang et al. for cocaine sensing[42]; (b) SEM image of the air-clad pedestal silicon waveguide designed by Pao Tai Lin et al.[43]; (c) Microscope image of the monolithic integrated sensor designed by Yi Zou et al. using germanium waveguides[44]; (d) The strip waveguide designed by Neetesh Singh et al. for D2O sensing[6]; (e) The suspended silicon waveguide designed by Floria Ottonello-Briano et al. for CO2 sensing (top) and the support structure of the designed suspended silicon waveguide (bottom)[8]

      增强光与分析物之间的相互作用是提高传感器灵敏度的有效手段之一。狭缝波导相较于传统标准结构的波导,可以增强狭缝区域的模场强度,是一种优秀的传感器件。M. Nedeljkovic等[46]于2013年首次介绍了基于SOI平台的中红外狭缝波导,如图4(a)所示。其总宽度为1.42 μm、缝宽为100~140 nm,从脊波导到狭缝波导的过渡损耗为0.04 dB/界面,在3.8 μm的波长处传播损耗为9~10 dB/cm。同一团队后来在2015年将结构参数改进,设计的中红外狭缝波导[47]高度为500 nm、宽度为650 nm、缝宽78 nm,如图4(b)所示。实验测得3.8 μm处的传播损耗为(1.4±0.2) dB/cm,从直波导到狭缝波导的过渡损耗为0.09 dB/界面,每90°弯曲损耗为0.18 dB。Pao Tai Lin等[48]基于“硅-液体-硅”型纳米流体狭缝波导,在2013年设计了一种无标签高集成度的片上化学传感器,如图4(c)所示。该传感器通过将光纳米流体技术(Optonanofluidics)与精心设计的狭缝波导结合在一起来实现光场增强,实验证明其化学检测的灵敏度相比传统波导提高了50倍。

      Figure 4.  Mid-IR slot waveguide & iHWG sensing units. (a) SEM image of the mid-infrared slot waveguide designed by Nedeljkovic et al.[46]; (b) Simulation result of the mid-infrared slot waveguide by the same team in 2015[47]; (c) The “silicon-liquid-silicon” nanofluidic slot-waveguide based on-chip chemical sensor designed by Pao Tai Lin et al[48]; (d) Schematic of a spiral iHWG etched on silicon substrate designed by Shaonan Zheng et al (top), the cross section of the spiral iHWG (bottom left) and the schematic assembly of LED, iHWG, and PD (bottom right)[50]

      传统的空心波导得益于其金属波导内表面的介电层,能够拥有很低的损耗(例如10.6 μm时损耗为0.5~1.5 dB/m[49]),然而这种波导的成本高、易受振动冲击的影响。一种新型的直接集成在衬底上的空心波导可以显著消除机械影响。2021年,Shaonan Zheng等[50]提出了一种芯片级硅基集成空心波导(Integrated hollow-waveguide,iHWG),作为光学气体传感器中的光波导和气室,见图4(d)。该集成空心波导由刻有圆形槽的底部晶片和作为封顶的顶部晶片在300 ℃下以3 000 N力挤压2.5 h粘合在一起,波导两侧均有金镀膜作为反射金属层。在许多场景下探测器的检测限需要低于ppm量级,由于集成空心波导拥有更大的表面粗糙度及对弯曲的敏感性,致使其光学损耗比实心波导更大,从而阻碍了空心波导探测器在这些场景中的应用。不过集成空心波导的尺寸更大,在中红外范围内相比实心波导容许更大的对准公差,允许直接进行自由空间光的耦合。因此在中红外范围内,集成空心波导的化学气体传感器是可行的。实验测得在4.26 μm处该器件的损耗为0.17 dB/mm左右。João Flavio da Silveira Petruci等[51]则基于类似原理将集成空心波导和预浓缩器结合,也将空心波导作为小型化的光波导和气室用来检测一氧化二氮。传感器将待检测气体用分子筛捕获后,以热解吸方式释放到传感器中,再用傅里叶光谱仪进行检测。实验中在约4.5 μm处成功检测出约306 ppbv的一氧化二氮(平均背景浓度为330 ppbv),理论中检测限为5 ppbv。

      环形谐振器具有很高的灵敏度,对外部环境变化十分敏感,是一种适用于光学传感以及信号处理的器件[52]。为了进一步提升其灵敏度,人们提出了基于游标效应的谐振腔传感器并将其广泛应用于超高性能传感器的设计之中[53-57],来显著提升如灵敏度等传感器性能指标。在一系列环形谐振器件中,级联环形谐振器与跑道型谐振器一同被认为是在光学传感器中应用游标效应的有效手段。2014年,Benedetto Troia等[58]设计了在SOI平台上的跑道型谐振器,如图5(a)所示,首次成功实践了在3.7~3.8 μm中红外范围内的游标效应,其插入损耗低于1 dB,品质因子约为8000,游标自由光谱范围(Free spectral range,FSR)为98 nm。2020年,Yuhua Chang等[59]将基于游标效应的热调硅基级联环谐振器应用到传感器中。同时利用折射率传感带来的高灵敏度以及吸收传感带来的高选择性,如图5(b)所示,通过对环半径和耦合间隙的研究,实现用两个谐振器之间的FSR差放大单个谐振器的共振位移,并且配置加热器通过热调制补偿制造缺陷带来的漂移问题,灵敏度达到0.091 nm/mW。在丙酮/异丙醇检测实验中,器件表现出48 nm的包络位移和6.7 dB的强度衰减,折射率灵敏度达到3 000 nm/RIU、检测限为0.002 RIU。除此之外,在传统环形谐振器传感器中,通常直接将谐振器暴露于分析物中,利用波导包层折射率发生的改变来引起谐振波长偏移,从而进行检测,这种方法通常需要定期重置[56, 60-61]。在2015年,Clinton J. Smith等[62]设计了基于环形谐振器的气体传感器,该传感器则通过计算分析物流通前后的共振腔品质因子变化差来实现浓度检测,不需要重复校准,如图5(c)所示。通过实验论证,该传感器在4.46 μm处的性能足够检测浓度为5000 ppmv的一氧化二氮气体。2014年,Yu Chen等[63]提出一种能在任意衬底上集成硅光器件的方法,并基于此项技术设计了一种基于硅微环谐振器的氟化钙基底传感器,如图5(d)所示。与蓝宝石上的硅、硅上的锗等中红外器件平台相比,氟化钙具有同样宽广的透明窗口,并能够提供更高的折射率对比度(在中红外光谱范围内折射率约为1.4),是一种优秀的中红外器件衬底材料。然而,就目前的工艺技术而言,在氟化钙上直接生长硅层是非常困难的。该小组利用新提出的集成技术,成功将硅薄膜从SOI转移至氟化钙衬底上,由于仅使用范德华力与其他表面力来固定硅薄膜,该方法并没有损坏硅的光学性能。在实验测量中,基于氟化钙的硅环形谐振器在未进一步平滑波导侧壁的情况下就已经具有3.8 dB/cm的低传播损耗,在5.2 μm处对应乙醇、甲苯和异丙醇的检测极限分别为0.05 ng、0.06 ng以及0.09 ng。

      Figure 5.  Mid-IR ring resonator based sensing units. (a) SEM image of the racetrack resonator designed by Benedetto Troia et al[58]; (b) Cascaded ring resonators for acetone/IPA sensing designed by Yuhua Chang et al[59]; (c) The ring resonator based N2O sensor designed by Clinton J Smith et al[62] ; (d) The sensor on a CaF2 substrate based on ring resonators designed by Yu Chen et al[63]

      光子晶体由于慢光效应[64-66],能够减少光吸收所需的路径长度,并且在紧凑的模式体积内与分析物有很强的光学模式重叠,与其他集成光子技术相比具有更高的传感灵敏度[64-66]。其中基于光子晶体的谐振器[67]、光子晶体波导[68]等器件已被应用于生物传感[69-70]。在2015年,Yi Zou等[71]在SOS平台上展示了第一个中红外波导耦合的光子晶体谐振腔,通过设计晶格常数验证了单波长光源在其中的传输特性。相较于SOI中包层氧化物透明到约3.7 μm处,SOS的包层蓝宝石透明窗口可以扩展至约5 μm [71]。实验观测到在光场泄漏区边界(Light line)下方的导模区,群折射率大于20时传播损耗低于20 dB/cm,在light line上方的传播损耗为300 dB/cm,而在光子禁带(Stop band)中零传输。并在同年展示了在3.43 μm处将光子晶体微腔侧面耦合至W1.05光子晶体波导(即光子晶体波导宽度为$1.05{\rm{ \times }}\sqrt 3 {\rm{ \times }} $光子晶体晶格常数)的技术[72] ,如图6(a)所示。该光子晶体微腔为Ln型,其中n代表着在平行于光子晶体波导的微腔阵列中缺失的空气小孔数量。通过调谐晶格常数,并结合温度控制,L21型的光子晶体微腔在侧面耦合后实验中测量的品质因子约为3500。后来,同组基于该技术设计了用于检测磷酸三乙酯(TEP)的中红外光子晶体波导传感器[73],这是在中红外波段内有关多孔和狭缝两种光子晶体波导的首次实验研究,如图6(b)所示。其中,多孔光子晶体波导是指在波导中沿传播方向刻蚀直径小于体光子晶体(Bulk photonic crystal)的圆形孔,这些孔的位置分布在传输光的波腹处。而狭缝光子晶体则是指在波导中心从输入端到输出端刻蚀一条窄缝。在多孔型光子晶体传感器的实验中,TEP及传感器被加热至70 ℃以实现TEP的气态检测,结果表明该探测器可以允许检测浓度低至10 ppm的TEP。2021年,Ali Rostamian等[74]设计了基于光子晶体的乙醇传感器,利用慢光效应及波导中增强的光场,在更小的空间尺寸中实现了更大的光与分析物相互作用的有效长度,如图6(c)所示。该传感器用于室温下的高灵敏度检测。通过优化设计达到光阻(Optical impedance)匹配,用于过渡光子晶体波导与直波导的锥形波导减少了菲涅耳反射损耗,进而减轻光子晶体波导中模式光谱会出现的条纹图案现象。实验证明在3.4 μm处,该传感器的检测限为250 ppb。

      Figure 6.  Mid-IR photonic crystal waveguide sensing units. (a) The schematic of the mid-infrared silicon-on-sapphire photonic crystal waveguide coupled microcavity designed by Yi Zou et al[72]; (b) The mid-infrared photonic crystal waveguide based TEP sensor designed by the same group: SEM image of the holey photonic crystal waveguide (left) and SEM image of the slotted photonic crystal waveguide (right) [73] ; (c) The schematic of the ethanol sensor based on photonic crystal designed by Ali Rostamian et al[74]

      (2)其他介质材料器件

      除了硅和锗之外,也有许多其他材料具备优秀的中红外传感能力。例如,硫系玻璃拥有几乎覆盖整个中红外波段的透明窗口,自身相对高的折射率也适用于高折射率对比度器件,允许在较小尺度上进行光的操控[75]。其优秀的片上集成潜力[76],受到许多关注,近年来报导了许多基于硫系玻璃的片上中红外传感器[77-78]。此外,氮化铝也具有十分宽的透明窗口(0.2~13.6 μm),同时具有CMOS兼容性、高耐化学及热扰动性,已经有诸如波导[79]、环形谐振器[80]和光子晶体[81]等器件的工作报导。因此,氮化铝也被认为是一种拥有很高潜能的中红外传感材料[82]。此外,还有五氧化二钽[83-84]等其他在中红外透明的传感材料平台正在研究之中。

      在痕量气体检测中,一方面光波导受到传播损耗的影响,传播长度被严重限制;另一方面,传统空气包层波导中倏逝场与物质作用的交叠积分远小于自由空间光,导致相互作用强度远小于自由空间光。为了获取与自由空间光相同的传感灵敏度,需要提高导波光的传输距离、加长波导长度。这两个因素相互制约,使得传统导波光传感落后于自由空间光传感。2021年,Marek Vlk等[85]设计了一种能够高效的提升倏逝场与物质作用的五氧化二钽波导作为光与物质相互作用的单元来解决这些问题,如图7(a)所示。五氧化二钽由于与CMOS工艺兼容、具有化学和机械稳定性[86]、低热膨胀[87]、低热光系数[88]以及从500 nm~10 μm光学透明[89]等原因被选为波导的芯层材料。该传感器件结构基于高深宽比的五氧化二钽薄膜,并去除底部包层,在膜与衬底之间留下较大的间隔,利用强导模离域(Strong guided mode delocalization)将更多能量限制在包层中与物质相互作用,将限制因子提高到100%以上。实验表明在2.566 μm处,仅2 cm长的波导对应的乙炔检测限(Limit of detection,LOD)可达到7 ppm,吸收噪声为4.5×10−5。若将波导设计成螺旋形,可以将20 cm长的波导卷曲在1 cm2面积内,并将多数气体的检测限降低至低于百万分之一浓度。

      Figure 7.  Mid-IR in-plane sensing units based on materials except group-IV. (a) The Ta2O5 waveguide designed by Marek Vlk et al for acetylene sensing[85]; (b) SEM image of chalcogenide waveguide designed by Mingquan Pi et al for CO2 sensing (left) and the sensor schematic (right)[90]; (c) Schematic of the bendable AlN-on-borosilicate waveguide based chemical sensor (left) and cross-section (right) designed by Tiening Jin et al[92]

      2021年,Mingquan Pi等[90]提出了一种波长为4.319 μm的采用硫系玻璃和氟化镁的新型波导气体传感器,如图7(b)所示。该传感器采用波长调制光谱法(Wavelength modulation spectroscopy,WMS)进行二氧化碳探测,与直接吸收光谱法(Direct absorption spectroscopy,DAS)同为可调谐直接激光吸收光谱(Tunable diode laser absorption spectroscopy,TDLAS)的典型方法。具体而言,DAS通过对比入射前和透射后光的强度变化来获得光吸收量,但是对于各种噪声十分敏感。而WMS是指在使用高频正弦信号调制激光波长的同时,使用低频的三角波信号对激光波长进行扫描,再从吸收信号中提取振幅与分析物浓度成正比的二次谐波(2f )信号,通过使用相干解调提来高灵敏度并抑制噪声[91]。除此之外,选择高折射率(>2)的硫系玻璃作为波导芯层,低折射率的氟化镁(在波长4.319 μm处为1.34)作为下包层,可以减少限制在下包层中的光功率。实验证明其探测限比使用直接吸收光谱法的同一传感器低8倍以上。

      诸如便携式成像、光链接、可穿戴光子等应用都建立在柔性集成光子学上。不过由于大多数柔性器件使用了在中红外光谱内不透明的有机聚合物材料,导致中红外范围内的柔性传感器仍待发展。2019年,Tiening Jin等[92]通过将超薄的硼硅酸盐片作为柔性基底,设计了一款可以弯曲的中红外氮化铝传感器,如图7(c)所示。氮化铝是优秀的中红外传感材料,而作为基底的超薄硼硅酸盐片与大块硼硅酸盐硬而脆的特点不同,可以弯曲且不开裂。硼硅酸盐在直到3.4 μm的中红外光谱范围内是透明的,可以实现宽光谱传输,并拥有化学热稳定性,能够在极端环境中进行化学及毒性检测。同时利用氮化铝和硼硅酸盐在中红外光谱和工艺上的力学性能,将氮化铝波导与硼硅酸盐基底结合在一起,便能够将可弯曲的光子器件化为可能。实验中,该可弯曲的光子器件在2.5~2.65 μm处成功完成了甲醇、乙醇、水及其混合物的实时浓度测量和无标签化学检定。

      (3)面内等离激元器件

      当入射在金属纳米结构上的光的波长远大于等离激元结构(Plasmonic structure)时,会引发相反电荷的局部相干振荡,产生表面等离激元共振,这就是表面等离激元共振现象(Surface plasmon resonance,SPR)[93]。共振的波长取决于环境折射率以及纳米结构的形状,并且会产生高强度、强局域化的电磁场,由此会对周遭折射率变化有高度的敏感性。目前已经根据该原理报道了多种光学器件,如滤波器[94]、调制器[95-96]、放大器[97-98]等。该特点可以被用来探测例如低浓度分析物、生物抗体、癌细胞、病毒等小型体,在高灵敏度、无标记的生物探检测领域有很大的潜能。一些基于等离激元共振原理的面内传感器件充分利用其增强光与物质相互作用的特点,设计出高度集成的片上传感器。

      例如,Benedikt Schwarz等[34]在2014年基于表面等离激元波导设计了如图8所示的中红外单片集成传感器,在同一片上集成了该波导以及量子级联激光器和量子级联探测器。激光器发出的光在与表面等离激元波导的表面波耦合后,再通过波导传播到探测器。与传统的介质波导相比,该波导模式的主要部分(约96%)位于分析物中,创造了强大的光与物质相互作用条件。同时,由于激光器产生的光偏振方向与表面等离激元方向相同,电场都垂直于芯片表面,无需任何混合集成工艺就能在同一衬底上完成制造。在6.5 μm的水/乙醇溶液实验中,该传感器实现了传感分辨率为0.06%的高动态浓度范围(0~60%)检测。

      Figure 8.  Scheme of the monolithically integrated plasmonic waveguide sensor designed by Benedikt Schwarz et al[34]

      本节所报道的主要中红外面内传感器件特性如表1所示。

      Ref.WaferWavelength/μmStructurePerformance
      & applications
      [6] SOS 3.96 Strip waveguide 0.25% D2O sensing (Experimental)
      [8] SOI 4.24 Suspended waveguide 0.1% CO2 sensing
      Propagation loss: 3 dB/cm
      (Experimental)
      [46] SOI 3.8 Slot waveguide Propagation loss: 9-10 dB/cm
      0.04 dB/interface
      (Experimental)
      [47] SOI 3.8 Slot waveguide Propagation loss: 1.40.2 dB/cm
      0.09 dB/interface
      0.18 dB/bend
      (Experimental)
      [48] SOI 2.5-4 Slot waveguide Differentiating
      n-bromohexane (R-Br)
      isopropanol (R-OH)
      toluene (Ar-CH3)
      [50] 4.26 iHWG Propagation loss: 0.170.07 dB/mm
      (Experimental)
      [51] 4.5 iHWG High sensitivity N2O sensing with analytical LOD of 0.0005%
      [58] SOI 3.7-3.8 Ring resonator Q: ~8000
      FSRvernier: 98
      (Experimental)
      [59] SOI 3.65-3.95 Ring resonator Q: ~4000
      FSRvernier: 90
      Acetone/IPA sensing
      with sensitivity: 3000 nm/RIU
      LOD: 0.002 RIU

      Theoretical <1% IPA in acetone sensing
      [62] SOS 4.46 Ring resonator Q: ~40000 (Experimental)
      Sufficient for 0.5% N2O sensing
      (Theoretical)
      [63] CaF2 5.2 Ring resonator Ethanol, toluene, IPA sensing with low mass loading LOD of 0.05 ng, 0.06 ng and 0.09 ng (Experimental)
      [73] SOS 3.43 Photonic crystal 0.001% TEP sensing
      (Experimental)
      [74] SOI 3.4 Photonic crystal Ethanol sensing with
      LOD of 250 ppb (Experimental)
      [85] Si 2.566 Ta2O5 free-standing shallow rib waveguide High sensitivity C2H2 sensing with LOD of 0.0007% (Experimental)
      [90] Si 4.319 ChG-on-MgF2 waveguide ~ 0.3% CO2 sensing (Experimental)
      [92] Borosilicate 2.5-2.65 AlN waveguide Identification of
      methanol, ethanol and water
      [34] N-doped InP 6.5 Plasmon waveguide H2O/C2H5OH sensing with a high dynamic range of concentration
      (0-60%) and a resolution of 0.06%

      Table 1.  Characteristics of the Mid-IR in-plane sensing units

    • 除了面内传感器外,面外传感器也是很常见的片上集成传感器件。在面外传感器件中,基于超表面结构的传感器件是很常见的一类。超表面是一种具有周期性亚波长结构的人工材料,基于超表面结构的光学传感器件一般需要通过解析面外照射光的透反射谱来完成分析物检测,因此大多都属于面外器件。在中红外波段,硅基[99]及其他材料的超表面研究正在逐步展开,相比之下现阶段更为成熟的面外中红外传感器件主要基于等离激元共振原理。它们以稍弱的集成能力为代价,展现出许多有趣的性能。

      例如通过面外的超表面结构,可以实现弯曲衬底情况下的广角度光吸收。如图9(a)所示,2018年,Chiao-Yun Chang等[93]依此设计了一种基于聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)材料的柔性表面等离激元共振传感器,这种材料具有高透明度和耐酸碱性,工作波长为5~6 μm。局域化表面等离激元共振波在金属-绝缘体-金属(Metal-insulator-metal,MIM)结构中具有很高的光学吸收特性,与入射的红外光的入射角度及偏振态无关。当光入射到MIM结构之后,所产生的等离激元共振就会被强烈地限制在该结构中,这意味着器件可以工作在弯曲的平面上。该传感器将若干个三层MIM圆盘嵌入PDMS基底,通过圆形的几何结构以保证在各种弯曲情况下的广角吸收,并调整MIM圆盘的嵌入深度将传感器的灵敏度提高至1670 nm/RIU,不同弯曲曲率下的灵敏度变化小于3.5%。在实验中成功检测出PBS+溶液中的A549癌细胞。

      Figure 9.  Mid-IR out-of-plane sensors. (a) The flexible surface plasmon resonance biochemical sensor based on PDMS materials designed by Chiao-Yun Chang et al[93]; (b) The dual-resonance Mid-IR MPA multifunctional chemical sensing platform designed by Dongxiao Li et al[17]; (c) The multi-resonance metasurface based label-free biosensor designed by Daniel Rodrigo et al[108]; (d) Schematic of the biosensor for passively capturing analyte molecules designed by Xianglong Miao et al[117]; (e) Schematic of the cross-section of the graphene-metallic metasurface biosensor designed by Yibo Zhu et al[119]

      此外,还有同样利用表面等离激元共振现象的表面增强红外吸收光谱(Surface-enhanced infrared absorption spectroscopy ,SEIRAS)技术。通过将目标分子放置于纳米结构的近场(在这里也可以被称作“热点(Hotspots)”),利用纳米结构的表面等离激元效应将近场强度提高几个数量级,能够极大增强化学品的振动指纹,被广泛应用于高光谱红外化学成像(Hyperspectral infrared chemistry)[100-101]、化学品和分子物质的超灵敏检测[102-105]等化学品检测。超材料完美吸收体(Metamaterial perfect absorbers,MPAs)被认为能够产生比超表面更强的近场增强[106],是表面增强红外吸收光谱的热门材料。不过一般的MPA单波段设计并不适合于由多个特征吸收峰组成的分子指纹检测,因此通常会略微牺牲性能以实现多波段的MPA设计。2021年,Dongxiao Li等[17]提出一种基于双共振中红外等离激元MPA的多功能化学传感平台。如图9(b)所示,其中双共振MPA由金底层、氟化镁介电分隔层、金纳米超材料MIM结构构成,超材料几何形状由两个相同周期的阵列旋转45°组合而成。该传感器被用于聚氰基丙烯酸乙酯(Poly ethyl cyanoacrylate,PECA)的片上检测。实验中通过同时检测PECA中C=C(1614 cm−1,即约6.19 μm)和C-O-C键(1252 cm−1,即约7.98 μm)的两个振动实现了对氰基丙烯酸乙酯(Ethyl cyanoacrylate,ECA)聚合和PECA固化的原位观察(In situ observation),同时通过基于分析物厚度变化引发的MPA红移和吸收增强实现了PECA的亚纳米级厚度检测。这些功能都在一块芯片上完成,合并简化了以往需要分别单独使用光谱仪、粘度计和椭偏仪才能完成的振动检测、厚度检测和聚合固化检测。

      另外,标准的无标签分析技术,例如石英晶体微量天平(Quartz crystal microbalance,QCM)[107]等,很难在已经存在一种分析物情况下将另一种分子从整体分离,而多共振中红外超表面可以解决这个问题。2018年,Daniel Rodrigo等[108]推出了如图9(c)所示的一种基于多共振超表面(Multi-resonant metasurface)的无标签中红外生物传感器,通过同时增强多个生物分子的不同振动指纹,实现多种异构生物样品的高灵敏度动态区分。同时超表面的振动吸收增强可以延伸至表面数十纳米,克服了表面增强拉曼光谱方法会遇到的多层分析困难。在实验中通过同时检测1500~1700 cm−1(对应光波波长约5.88~6.67 μm)和2800~3000 cm−1(对应光波波长约3.33~3.57 μm)成功实现水环境中脂质和蛋白质系统的实时检测。

      还有一个表面增强红外吸收光谱面临的问题是,分析物通常分布在整个传感器表面,只有小部分分析物分子被放置于传感器热点。近年来报道的许多光子结构,无论诸如纳米棒[109]、胶体纳米颗粒[110-112]、MIM金属-绝缘体-金属结构[113-115],亦或是加入纳米间隙来增强超高场限制[116],其近场强度增强的热点区域也只占光子结构的一小部分。由共振提供的增强信号主要发生于热点之中,这意味着实际上大部分分析物分子没有得到增强。2021年,Xianglong Miao等[117]设计了一种可以通过蒸发分析物被动捕获热点内分析物分子的谐振器。如图9(d)所示,该器件为MIM结构,顶端为周期性排列的铝带,锗作为中间的绝缘体层,金背反射器置于最下方。锗带宽度比铝带小数百纳米,由此当分析物溶液逐渐蒸发时,分子可以被动留在纳米沟槽内,同时可以通过调整锗、铝的几何参数来优化入射光激发的共振模式。该器件在微量脯氨酸和葡萄糖的实验中,成功实现了质量为皮克级的检测。

      除此之外,二维材料也被应用于等离激元共振传感器件。二维材料是一种厚度从单层原子到几个原子层不等的晶体,具有高刚度和柔韧性,能够适应各种光子结构,增强光与物质的相互作用。石墨烯是一种被广泛研究的二维材料,其极高的电子迁移率和线性的能量-动量色散给石墨烯带来了诸如宽带光吸收等有趣的光学特性[118]。2018年,Yibo Zhu等[119]提出了由单层石墨烯覆盖的金纳米天线阵列组成的混合超表面传感器。如图9(e)所示,下方的二氧化硅层将之与底部的铂反射镜分隔,在1500 cm−1处(对应光波波长约6.67 μm)拥有初级共振(Primary plasmonic resonance)。该器件利用等离激元共振频率随分析物分子浓度变化的特性来增强灵敏度,并通过分析石墨烯光导率引起的共振位移来区分与分析物分子量相近的其他分子,相比于其它那些对于石墨烯迁移率非常敏感的、仅使用石墨烯一种材料的传感器更加稳定。实验展示了亚纳米级分子的测量,检验浓度低至200 pM(即36 pg/mL)。文中报道的主要面向中红外等离激元共振传感器件特性对比如表2所示。

      Ref.Wavelength/μmDevicePerformance & applications
      [93]~5.09MIM-disk LSPR sensorFlexible sensor Sensivity: 1670 nm/RIU (Experimental) Detecting A549 cancer cells in a PBS+ solution
      [17]~6.19 for C=C & ~7.98 for C-O-CMultifunctional chemical sensing platform based on dual-resonant infrared plasmonic MPAdetecting the states of PECA, including vibrational detection, thickness measurement, and observation of
      polymerization and curing
      [108]5.88-6.67 for amide I–II &
      3.33-3.57 for CH2
      Multi-resonant infrared metasurface sensorReal-time monitoring of lipid-protein systems in aqueous environments
      [117]5.88-7.14Biosensor with passive molecule trapping functionalityL-proline & D-glucose sensing with a mass down to
      ~1 pg (Experimental)
      [119]~6.67Hybrid graphene-metallic metasurface sensorMeasuring the monolayers of sub-nanometer-sized molecules or particles Affinity binding-based quantitative detection of glucose down to 200 pM (36 pg/mL) (Experimental)

      Table 2.  Characteristics of the mid-IR out-of-plane SPR sensors

    • 光谱是用于分析光-物质相互作用的重要表征参数[120],如揭示材料纳米结构[121],化学成分分析[122],生物研究[123],气体吸收传感[124]等。同时,光谱还可用于光通信[125],高光谱成像[126],实现遥感测量[127]等用途。在传感系统中,经过传感单元对光的吸收后,往往需要通过作为光谱分析工具的光谱仪进行光谱求解以定量分析光谱成分,获取例如气体浓度等光谱信息。目前大部分的片上光谱仪研究主要针对可见光和近红外光谱范围[125, 128-134],中红外光谱的相关报导多为分立元件所实现的光谱仪,本节将会回顾一些中红外波段的集成片上光谱仪。

      对于集成在片上的中红外光谱仪结构,主要分为以下几种:滤波-光谱重建光谱仪,空间外差法光谱仪以及双光梳光谱仪。滤波光谱重建光谱仪,由于其能够以较小的结构实现较大的光程(如谐振腔)或不同的光谱响应,所以通常其具有结构更紧凑的特点,但具体需要根据光谱仪本身结构特征探讨其优缺点。基于空间外差法的傅里叶变换光谱仪,具有高光通量和高信噪比的特点,但为了实现更长的光程,通常需要较大的结构面积。双光梳光谱仪利用光梳在时间域的相干拍频,对相干结果做光谱求解,通常能够以较小的面积进行高精度的光谱检测,但其对光梳生成和探测速度的要求也相应较高。

    • 滤波-重建型光谱仪主要基于滤波器,通过多滤波谐振阵列或调谐的方式,获取对应参数相关波长的功率值,并直接探测光强,取得光谱。其光谱带宽主要取决于调谐次数或者阵列个数,而其分辨率则主要取决于滤波器的带宽。谐振腔结构就是一种常见的滤波器。通过设计低损高Q的谐振器可以实现窄带滤波功能。最近,Tianran Liu等[135]在3000~3500 nm波段范围内,利用反向设计算法,设计了一种开放通道无序拓扑结构光谱重建光谱仪。

      图10(a)所示,该结构在设计时,通过迭代优化基本圆孔结构的形状,能够实现不同通道对不同波长的路由,最后对输出光强根据通道透射关系进行光谱重建。其每通道线光谱半高宽可达39 nm,共设计了10个通道。Shaofan Yuan等[136]则基于二维材料黑磷(Black phosphorus,BP),设计了一种可调谐光谱重建光谱仪。如图10(b)所示,该光谱仪在SOI平台上结合了中红外透明石墨烯顶栅、无阱的六方氮化硼封装和适当厚度的BP薄膜而实现的。利用Stark效应,对BP施加一定电压,能够调整此光谱仪对波长的响应,调谐范围为2~9 μm。在使用算法建立起响应矩阵后,对光谱进行重建。该光谱仪能够识别4.3 μm处CO2的特征吸收峰,且当仅在4~7 μm范围调谐时,在81次采样的情况下,最高能获得90 nm的光谱分辨率。Hwa-Seub Lee等[137]设计了基于金属纳米铝盘的多晶格周期阵列。如图10(c)所示,结构不同的晶格周期对应不同的谐振波长,用以实现带阻滤波器型光谱重建光谱仪。通过测量对应晶格周期的滤波函数,用以重建中红外光谱。在50个滤波器为个数的情况下,辅以Tikhonov稀疏重建方法,可在1000~4000 cm−1的范围内识别半高宽(Full width half maximum,FWHM)为76 cm−1, 中心间距为115 cm−1的两个波峰。

      Figure 10.  Reconstructive spectrometers. (a) Reconstructive spectrometer simulation based on inverse design proposed by Tianran Liu et al[135]; (b) Schematic of a tunable reconstructive spectrometer based on black phosphorus proposed by Shaofan Yuan et al[136]; (c) Reconstructive spectrometer with a multi-lattice periodic array of metal nano-aluminum disks designed by Hwa-Seub Lee et al[137]

      有关滤波-重建型光谱仪性能参见表3

      Ref.StructureWavelength/WavenumberFeatureNotes
      [135]Disorder structure3 000-3 500 nmSingle channel FWHM can achieve 39 nmSimulation
      [136]Black phosphorus2-9 μm90 nm resolution with 4-7 μm bandwidth
      [137]Nano metal disk array1 000-4 000 cm−1Can recover two peaks with FWHM 76 cm−1, center interval 115 cm−1

      Table 3.  Summary of reconstructive spectrometers

    • 除上述滤波-重建型光谱仪外,目前在中红外波段使用最多的光谱仪探测方式还有傅里叶变换光谱仪[138]。其原理是利用马赫曾德干涉仪(Mach-Zehnder interferometer,MZI)[139]或迈克尔逊干涉仪(Michelson interferometer, MI)[129]结构,在保持参考光路不变的同时,通过增加或减少可变光路的长度,实现不同光程差的变化,并将不同波长的相位关系导出,用以复原输入光谱。Milos Nedeljkovic等[140]开发了基于SOI晶圆上的空间外差傅里叶变换光谱仪,见图11(a)。在42个静态MZI组合成的阵列下,3.75 μm波长附近,最高57 nm带宽范围内,实现了2.7 nm左右的光谱分辨率。Elham Heidari等[141]在蓝宝石上硅平台上,利用12个MZI组成的阵列,波长3.3 μm即波数为3 000 cm−1附近,带宽为50 cm−1的光谱范围内,实现了10 cm−1左右的光谱分辨率傅里叶变换光谱仪。Qiankun Liu等[142]在锗硅(Germanium on silicon,GOS)平台上开发了由19个MZI组成的傅里叶变换光谱仪。见图11(b),其在132 cm−1的自由光谱FSR范围内,实现了小于15 cm−1的分辨率,且支持在800 cm−1的光频率范围TE和TM两种模式下运行。图11(c)为Miguel Montesinos Ballester等[143]在GOS平台上开发了除具有9个MZI的静态阵列外,还同时使用热光效应进行热扫描的结构。在中心波长为7.7 μm,带宽为600 cm−1的光谱范围内,实现了15的分辨率。此外,Alaa Fathy等[144]基于MEMS技术实现了微机械结构型的傅里叶变换光谱仪,见图11(d)。虽然该系统只使用了一个微驱动器结构,最大驱动路径为ΔL=180 μm,但是通过4路干涉仪结构,每路动镜位置相差2ΔL,四路驱动范围为1 440 μm,即分辨率则最高可提高4倍。该光谱仪可同时在1.55 μm和超2 μm波段运行,4路测量结果为在1550 nm波段附近左右实现了2.4 nm的半高宽复原精度,在2 μm处则实现了4.9 nm的半高宽复原精度,且4路分辨率性能相比单路均提高了3倍以上。有关空间外差傅里叶变换光谱仪性能参见表4

      Figure 11.  Spatial heterodyne Fourier transform spectrometers. (a) SEM image of a MZI array spectrometer designed by Milos Nedeljkovic et al[140]; (b) SEM image of a MZI array spectrometer designed by Qiankun Liu et al [142] ; (c) Schematic diagram of thermo-optical scanning MZI array spectrometer designed by Miguel Montesinos-Ballester et al[143]; (d) Schematic diagram and SEM image of a micromechanical structure-type Fourier transform spectrometer designed by Alaa Fathy et al[144]

      Ref.StructureWavelength/WavenumberFeature
      [140]42 MZIs array3.75 μm2.7 nm resolution with 57 nm bandwidth
      [141]12 MZIs array3 000 cm−1Better than 10 cm−1 resolution with 50 cm−1 bandwidth
      [142]19 MZIs array5-8.5 μmBetter than 15 cm−1 resolution with 132 cm−1 FSR
      [143]10 MZIs array with thermo-optics modulation7.7 μmBetter than 15 cm−1 resolution with 603 cm−1 FSR
      [144]4 channels MI with one MEMS driver1.55 μm, 2 μm2.4 nm resolution at 1.55 μm, 4.9 nm resolution at 2 μm

      Table 4.  Summary of spatial heterodyne Fourier transform spectrometers

    • 随着波长的增加,基于空间外差法的傅里叶变换光谱仪所需的面积也会变大。为了能够在较小的面积中实现光谱的检测,基于光频梳[5]的双光梳光谱仪(Dual-comb spectrometer,DCS)被提出[145- 146]。如图12(a)所示,其主要原理为两束光频梳分别以frfrfr的重复频率进行合束,混合相干后两束光会产生拍频,将光频段的谱映射至射频波段,通过在时域对输出光强的采样,将其傅里叶变换为射频域谱,并与之对应到红外光频段上[147]。目前在中红外波段生成片上光频梳[16]主要有两种方式,一种[148]是将锁模激光器生成的锁模激光耦合至波导中,输入光本身就是一个光频梳,在波导中传播时,由于波导中存在三阶克尔非线性效应,当相互作用足够强且具有合适的色散情况下,输入光谱会通过四波混频扩展,光频梳带宽可以超过一个倍频。另一种[149]则是向谐振腔(如微环谐振腔)打入高强度的单波长CW激光,通过调谐激光,将激光耦合进谐振腔中,利用光参量振荡,生成对称于输入光的一组频率模式,并由于三阶克尔非线性效应,在谐振腔中激发出多种谐振模式,最终锁定并产生耗散克尔孤子光频梳。如图12(b)所示,Mengjie Yu等[150]将光参量振荡器生成的超连续光导入两个SOI平台的片上微环谐振腔,利用克尔效应生成一对相干光频梳,通过在时域上的采样检测,能够复原2900~3100 nm范围内的光谱,并拥有4.2 cm−1的光谱分辨率。此外,如图12(c)所示,Tong Lin等[151]在近红外所做的非线性耗散克尔孤子双梳光谱仪工作,通过基于SiN波导平台的两个半径略微不同的微环谐振腔,在1550 nm处生成了两个跨度约为300 nm的光频梳,其fr为197 GHz,Δfr < 10 MHz。处理光谱时,同时通过CW激光调谐和微环的热调谐,实现了37.5 THz的光谱范围和小于400 kHz的光谱分辨率。这个工作也为中红外波段的片上克尔双光梳光谱仪提供了一种实现参考。有关双光梳光谱仪性能参见表5

      Figure 12.  Principle and structure diagram of the dual-comb spectrometer. (a) Frequency domain and time domain schematic of the dual-comb spectrometer[147]; (b) Schematic of the on-chip dual-comb spectrometer based on the optical parametric oscillator by Mengjie Yu et al[150];(c) Schematic and optical microscope image of a nonlinear dissipative Kerr soliton dual-comb spectrometer in the near-infrared by Tong Lin et al[151]

      Ref.Comb generationWavelength/μmPerformanceNotes
      [150]OPO2.9-3.14.2 cm−1 resolution with 200 nm bandwidthProvide an example for Mid-IR dual-comb on-chip spectrometer
      [151]DKS1.55Better than 400 kHz resolution with 37.5 THz bandwidth

      Table 5.  Summary of dual-comb spectrometers

    • 光电探测器作为光强度信息获取的工具,在整个通信和传感系统中扮演着至关重要的角色。其可以作为片上传感如光谱仪,传感单元等信号收集端,也可用于雷达等设备的接收后端,作为数据采集的工具。目前报道的中红外的探测器材料主要有HgCdTe合金[152],III-V材料[153],二维材料[154],IV族材料[155]等。在1959年被提出的HgxCd1-xTe合金,由于其带隙可调性,可用作于大部分的红外波段探测器。通过增加Cd的含量,可将合金的禁带宽度从HgTe调整至CdTe(0-1.65 eV)[156],也因此可以将探测范围从近红外调整至长波红外。此外,还可对HgCdTe探测器进行工作温度调节,使其可以工作在室温或常温等不同温度下。目前大部分所提及HgCdTe探测器主要用于焦平面阵列,红外热成像,且已经有较为成熟的商业解决方案。由于低于CdZnTe衬底的量子效率,热膨胀系数失配和晶格参数失配等问题[157],仅有一部分工作报告了在Si衬底上加工HgCdTe探测器[158]。InAs1-xSbx作为III-V化合物半导体材料,有着传统III-V三元合金最小的带隙[153]。探测范围能够覆盖大气透明窗(3~5 μm,8~12 μm),同时具有更好的生长均匀性,更易于加工。除了III-V材料作为中红外探测器,目前还有石墨烯,黑磷,WS2/MoS2等二维材料集成作为片上探测器。其有着较大的光学响应带宽,可调谐的光与物质相互作用等。同时它能够避免与硅或锗的晶格失配问题,具有较大的应用前景。石墨烯作为第一个二维材料,具有独特的线性的能量-动量色散关系,因为其能带结构为狄拉克锥形无带隙结构,也因此可以吸收可见光到远红外。黑磷则作为结合了带隙可调和各向异性的特点,能够覆盖近红外和中红外波长区域[156]。此外,IV族GeSn合金光电探测器,通过改变Sn的含量,可以调整GeSn能带的性质,即直接或间接能带,也可实现对探测波长的调整,其最具性价比的探测波长范围在2~3 μm。并且因其对CMOS工艺的兼容性,生长温度低,也为中红外探测器提供了另一种实现方式。各种材料的探测带宽范围如图13所示。

      Figure 13.  Optical response range of some absorbing materials

    • 当前报告最多的集成光电探测器探测方式主要为面外探测器,多用于焦平面阵列,红外成像,遥感等领域。Jiang Wu等[159]提出一种在硅衬底上集成InAs/GaAs量子点中红外探测器的方法,通过GaAs缓冲层,减小了暗电流密度,并且能够在80 K温度下探测到8 μm波长范围。Bowen Jia等[160]报告了一种在Si衬底上集成InSb光电探测器。如图14(a)所示,该探测器的50% 截止检测波长从80 K时的5.7 μm增加到200 K时的6.3 μm。在80 K温度5.3 μm波长下测得响应度为0.7 A/W,探测率为8.8×109 Jones。Evangelia Delli等[161]利用分子束外延法,如图14(b)所示, 在Si衬底上直接生长高性能的InAs/InAsSb超晶格中红外探测器。其采用一种新的生长方法克服了直接在硅上生长GaSb的困难,包括AlSb界面失配等,实现了截止波长为5.5 μm,在200 K下测得0.88 A/W的响应度和1.5×1010 Jones量级的探测率。Enping Wu等[162]报道一种基于II型超晶格WS2/Si异质结的中红外探测器,通过在硅上原位生长WS2薄膜,其测量范围可以从200 nm达到3043 nm,响应度为224 mA/W,探测率为1.5×1012 Jones。文中上节所述,Shaofan Yuan等[136]通过黑磷强烈的Stark效应,设计了一种SOI上可调谐的黑磷光电探测器,光谱范围为2~9 μm。Cong Hui等[163]通过分子束外延的方法,如图14(c)所示, 在n型Si衬底上生长了GeSn层,该探测器截止波长为2.3 μm,室温下2 μm响应度为93 m A/W。最近,Huong Tran等[164]在基于锗-硅的平台上,如图14(d)所示,通过调整GeSn中Sn的成分比例最高达22.3%,实现了将截止波长延申至最大3.65 μm波长处。并结合GeSn光电二极管的钝化工艺,使得在77 K温度下,达到了最高1.1×1010 J的探测率。

      Figure 14.  Mid-IR integrated photodetectors. (a) Schematic of the integrated InSb photodetector on Si substrate reported by Bowen Jia et al[160]; (b) Schematic of the high-performance InAs/InAsSb superlattice mid-infrared detector directly grown on Si substrate proposed by Evangelia Delli et al[161]; (c) Schematic of the GeSn mid-infrared detector proposed by Cong Hui et al[163]; (d) Schematic of the GeSn mid-infrared detector proposed by Huong Tran et al[164] ; (e) Schematic of a graphene-based heterostructure photodetector proposed by Xiaomu Wang et al[165]; (f) Schematic of the photodetector based on chalcogenide glass-on-graphene waveguide integration proposed by HongTao Lin et al[24]; (g) Schematic of the metal-graphene-metal waveguide integrated detector reported by Zhibo Qu et al[166]; (h) Schematic of the waveguide-integrated black phosphorus mid-infrared detector proposed by Li Huang et al[167]

    • 波导集成作为探测器的另一种设计方式,可通过绝热耦合、光栅耦合等方式,加强光与吸收材料的交互,导出光强信息。Xiaomu Wang等[165]提出了一种基于石墨烯的异质结构光电探测器,如图14(e)所示,通过石墨烯与SOI上光波导的集成,能够吸收平行于石墨烯传播的倏逝光,室温下在2.75 μm波长处光的响应度达0.13 mA/W。Hongtao Lin等[24]在中红外波段通过硫系玻璃波导和石墨烯的集成,实现了一系列的中红外光子器件,其中也包括了波导集成的光电探测器。如图14(f)所示,通过在单层石墨烯上沉积和图形化制备硫系玻璃波导和金属电极,实现了波导集成的中红外光电探测器,并涵盖了硅基和柔性聚合物。其工作波段包括了2.0~2.55 μm, 在2.03 μm处达到峰值响应250 mA/W。 Zhibo Qu等[166]报导了一种金属-石墨烯-金属的波导集成探测器,其工作波长为3.8 μm。如图14(g)所示,其中波导为脊波导,并在波导上方沉积一层SiO2用于钝化,将石墨烯转移到波导上后,再制作Au电极。在3.8 μm下响应度为2.2 mA/W。Li Huang等[167]提出了一种波导集成黑磷的中红外探测器的方案。如图14(h)所示,在SOI平台上集成黑磷探测器的同时,由于黑磷在截止波长处吸收较弱,通过光栅辅助耦合和硅波导的约束结构,增强了光-物质的相互作用。文中研究的光谱范围为3.68~4.03 μm,在3.68 μm时响应度为23 A/W,在4 μm时为2 A/W,室温下噪声等效功率小于1 nW/Hz1/2。文中报道的各探测器性能如表6所示。

      Ref.TypeMaterialSpectral range or cutoff wavelengthKey featureNotes
      [159] InAsSb/InSb InAs/GaAs 5-8 μm at 80 K Low dark current density
      [160] InSb ~5.7 μm at 80 K
      ~6.3 μm at 200 K
      R: 0.7 A/W, D*:8.8×109 Jones
      [161] InAs/InAsSb ~5.5 μm at 200 K R: 0.88 A/W, D*: 1.5×1010 Jones
      [165] 2D material Graphene 2.75 μm at room temperature R: 0.13 A/W Waveguide integrated
      [166] Graphene 3.8 μm at room temperature R: 2.2 mA/W Waveguide integrated
      [24] Graphene 2.0-2.55 μm (Research range) R: 250 mA/W Waveguide integrated
      [162] WS2 0.2 μm-3.043 μm R: 224 mA/W, D*: 1.5×1012 Jones
      [167] BP 3.68-4.03 μm at room temperature (Research range) R: 23 A/W at 3.68 μm and
      2 A/W at 4 μm
      Waveguide integrated
      [136] BP 2-9 μm N/A Tunable range
      [163] IV GeSn ~2.3 μm at room temperature R: 93 mA/W
      [164] GeSn ~3.65 μm at 300 K, 22.3% Sn R: 16.1 A/W, D*: 1.1×1010 Jones at 77 K and 12.5% Sn

      R: 3.2 mA/W, D*: 1.1×108 Jones at 300 K and 22.3% Sn
      R: Responsivity, D*: Detectivity

      Table 6.  Summary of mid-IR integrated photodetectors

    • 对于中红外集成光子传感平台,主要介绍其三个组成单元:传感单元、片上光谱仪和光电探测器,并讨论了当前的研究进展。在传感方面,文中介绍了面内、面外的传统波导型和表面等离激元型传感单元,并回顾了一些研究工作的结构特点。在光谱分析仪中,主要分滤波-重建型光谱仪,傅里叶变换光谱仪和双光梳光谱仪几种类型进行回顾,并介绍了其中一部分器件的性能。此外,对于在通信和传感等领域中起着重要作用的光电探测器,文中主要从面外和面内波导集成探测器两个方面进行了叙述。

      总体来说,中红外波段是理想的传感波段。同时由于波长比近红外更长,中红外器件的微结构特征尺寸所需工艺要求通常更低,使得工艺与制造更加容易。然而,目前中红外平台仍面临着一些不可忽视的问题。例如,第一,相较于更加成熟的近红外平台,中红外器件在传播损耗、插入损耗等性能方面还有很多可以提升的空间;第二,中红外光源、传感单元、中红外光电探测器的单片集成问题亟待解决,虽然许多器件的性能表现优异,但能够与之完全单片集成的光源和探测器目前还尚未达到商业化水平,这限制了中红外传感系统走出实验室环境和大规模向工业,军事和民用等领域普及;最后,许多除了传统硅基材料外的中红外平台相关研究正在展开,在此情景之下,如何权衡新材料带来的优秀性能和CMOS加工工艺兼容上的困难,并同时做到与硅基平台相近的成本等难题仍待解决。但是这些问题并非无法克服,相信在研究人员的努力下,中红外传感将于未来能够在信息科学、天文、物联网、生命,可穿戴等科学、军事、工业和民用领域,发挥出重要的作用。

Reference (167)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return