Volume 51 Issue 12
Dec.  2022
Turn off MathJax
Article Contents

Zheng Xuefei, Li Chun, Fan Xiaoyan, Yuan Guang, Luan Xiaoning, Yao Ziqing, Li Kai. Influence of temperature and turbidity on Rhodamine B tracer detection and correction[J]. Infrared and Laser Engineering, 2022, 51(12): 20220243. doi: 10.3788/IRLA20220243
Citation: Zheng Xuefei, Li Chun, Fan Xiaoyan, Yuan Guang, Luan Xiaoning, Yao Ziqing, Li Kai. Influence of temperature and turbidity on Rhodamine B tracer detection and correction[J]. Infrared and Laser Engineering, 2022, 51(12): 20220243. doi: 10.3788/IRLA20220243

Influence of temperature and turbidity on Rhodamine B tracer detection and correction

doi: 10.3788/IRLA20220243
Funds:  National Key Research and Development Program(SQ2019 YFC140012);National Natural Science Foundation for Youth Foundation(41906163);National Natural Science Foundation of China(42076183)
  • Received Date: 2022-04-08
  • Rev Recd Date: 2022-05-11
  • Accepted Date: 2022-05-17
  • Publish Date: 2022-12-22
  • Due to the increasingly serious environmental pollution, it is necessary to trace the pollutants. The tracer Rhodamine B is an effective way to trace the source of pollutants. However, in the in-situ pollutant tracking and detection using Rhodamine B fluorescence sensor, the measurement results will be affected by environmental factors such as temperature and turbidity. Therefore, it is important that the accuracy of the in-situ detection of Rhodamine B is improved by compensating and correcting the two main environmental factors, temperature and turbidity. Fluorescence spectra of Rhodamine B with different concentrations were detected by fluorescence spectrophotometer, and partial least squares (PLS) method was used to analyze the spectral data and establish the standard curve. The fluorescence spectra of Rhodamine B were measured and analyzed in the range of temperature from 10 ℃ to 60 ℃ and turbidity from 0 NTU to 55 NTU. The results showed that the fluorescence intensity of Rhodamine B was negatively correlated with temperature and positively correlated with turbidity. Since the rate of change of Rhodamine B concentration difference has a good linear relationship with temperature and turbidity, the rate of change of Rhodamine B concentration difference is used for compensation correction in different environments. After temperature and turbidity compensation correction, the relative errors of concentration detection results were less than 0.48% and 0.34%, respectively, which improved the detection accuracy of Rhodamine B in different environments. What’s more, under the influence of temperature and turbidity, the detection results were analyzed, by doing so, a model of common compensation correction was established. It provides a correction method to suppress the interference of temperature and turbidity in-situ detection of Rhodamine B.
  • [1] Wtor K, Zdechlik R. Application of water quality indices to the assessment of the effect of geothermal water discharge on river water quality-case study from the podhale region (Southern Poland) [J]. Ecological Indicators, 2021, 121: 107098. doi:  10.1016/j.ecolind.2020.107098
    [2] Gu Y H, Zuo Z L, Zhang Z Z, et al. Algorithmic study of total petroleum hydrocarbons in contaminated soil by three-dimensional excitation-emission matrix fluorescence spectroscopy [J]. Chinese Optics, 2020, 13(4): 852-864. (in Chinese) doi:  10.37188/CO.2019-0216
    [3] Li C L, Lv G, Yuan L Y, et al. Laboratory calibration and application of the airborne thermal infrared hyperspectral imager [J]. Infrared and Laser Engineering, 2020, 49(5): 20190117. (in Chinese) doi:  10.3788/IRLA20190117
    [4] Xu J Q, Wang Y Q, Xu Y R, et al. Research progress of ocean environmental laser remote sensing based on Brillouin scattering [J]. Infrared and Laser Engineering, 2021, 50(6): 20211036. (in Chinese) doi:  10.3788/IRLA20211036
    [5] Xu F, Liu J H, Sun H, et al. Research progress on vessel detection using optical remote sensing image [J]. Optics and Precision Engineering, 2021, 29(4): 916-931. (in Chinese) doi:  10.37188/OPE.2020.0419
    [6] Zhuang Z, Shi H, Kang J, et al. An overview on covalent organic frameworks: Synthetic reactions and miscellaneous applications [J]. Materials Today Chemistry, 2021, 22: 100573. doi:  10.1016/j.mtchem.2021.100573
    [7] Yue X, Li Y, Xu S, et al. A portable smartphone-assisted ratiometric fluorescence sensor for intelligent and visual detection of malachite green [J]. Food Chemistry, 2022, 371: 131164. doi:  10.1016/j.foodchem.2021.131164
    [8] Drexhage K H, Martin G. What's ahead in laser dyes? [J]. Laser Focus, 1973, 9(3): 35-39.
    [9] Bermingham J F, Chen Y Y, Mcintosh R L, et al. A measurement and modeling study of temperature in living and fixed tissue during and after radiofrequency exposure [J]. Bioelectromagnetics, 2014, 35(3): 181-191. doi:  10.1002/bem.21834
    [10] Yan J, Wang Z L, Xu J, et al. Study on rapid detection method of rhodamine B tracer in marine water [J]. World Nuclear Geology, 2019, 36(4): 221-228. (in Chinese) doi:  10.3969/j.issn.1672-0636.2019.04.006
    [11] Luo M Y, Jiang J P, Pang T R, et al. Application of three-dimensional fluorescence quantitative method in rhodamine B river tracer test [J]. Environmental Science & Technology, 2020, 43(4): 54-60. (in Chinese)
    [12] Liu Y D, Xu H, Sun X, et al. On-line detection of soluble solids content of apples from different origins by visible and near-infrared spectroscopy [J]. Chinese Optics, 2020, 13(3): 482-491. (in Chinese)
    [13] Shang J, Meng Q L, Huang R S, et al. Nondestructive detection for kiwifruit quality and maturity by optical fiber spectroscopy technology [J]. Optics and Precision Engineering, 2021, 29(5): 1190-1198. (in Chinese) doi:  10.37188/OPE.20212905.1190
    [14] Hu F, Zhou M R, Yan P C, et al. Effect of temperature on laser-induced fluorescence spectrum of goaf water in mine [J]. Spectroscopy and Spectral Analysis, 2018, 38(8): 2583-2587. (in Chinese)
    [15] Zhou K P, Bai X F, Bi W H. Effect of temperature, turbidity and pH on COD determination by fluorescence spectrometry [J]. Spectroscopy and Spectral Analysis, 2019, 39(4): 1097-1102. (in Chinese)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  / Tables(4)

Article Metrics

Article views(223) PDF downloads(40) Cited by()

Related
Proportional views

Influence of temperature and turbidity on Rhodamine B tracer detection and correction

doi: 10.3788/IRLA20220243
  • 1. Optics and Optoelectronics Laboratory of Qingdao, College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China
  • 2. College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
Fund Project:  National Key Research and Development Program(SQ2019 YFC140012);National Natural Science Foundation for Youth Foundation(41906163);National Natural Science Foundation of China(42076183)

Abstract: Due to the increasingly serious environmental pollution, it is necessary to trace the pollutants. The tracer Rhodamine B is an effective way to trace the source of pollutants. However, in the in-situ pollutant tracking and detection using Rhodamine B fluorescence sensor, the measurement results will be affected by environmental factors such as temperature and turbidity. Therefore, it is important that the accuracy of the in-situ detection of Rhodamine B is improved by compensating and correcting the two main environmental factors, temperature and turbidity. Fluorescence spectra of Rhodamine B with different concentrations were detected by fluorescence spectrophotometer, and partial least squares (PLS) method was used to analyze the spectral data and establish the standard curve. The fluorescence spectra of Rhodamine B were measured and analyzed in the range of temperature from 10 ℃ to 60 ℃ and turbidity from 0 NTU to 55 NTU. The results showed that the fluorescence intensity of Rhodamine B was negatively correlated with temperature and positively correlated with turbidity. Since the rate of change of Rhodamine B concentration difference has a good linear relationship with temperature and turbidity, the rate of change of Rhodamine B concentration difference is used for compensation correction in different environments. After temperature and turbidity compensation correction, the relative errors of concentration detection results were less than 0.48% and 0.34%, respectively, which improved the detection accuracy of Rhodamine B in different environments. What’s more, under the influence of temperature and turbidity, the detection results were analyzed, by doing so, a model of common compensation correction was established. It provides a correction method to suppress the interference of temperature and turbidity in-situ detection of Rhodamine B.

    • 随着我国制造业规模的不断壮大,包括含热废水在内的各类工业污染物排放量与日俱增[1-3],对自然生态环境和人民生产生活构成愈发严峻的威胁。为此,我国相继制定了包括《水污染防治法(2017年修正)》在内的多部法律法规对企业的污染排放进行严格管理。尽管各类管理措施不断出台,但极个别企业仍在通过地下暗渠等更加隐秘的方式进行污染物偷排。在河流、池塘等较高浊度自然水体的遮蔽下,航空遥感等传统监视监测手段针对此类违法行为的监视监测能力受到很大制约,给相关违法行为的查处和污染责任的追溯造成了较大的困难[4-5],而在示踪剂的辅助下开展地下暗渠、管网以及污染物流向监测恰恰是解决此类难题的理想手段。

      作为一种邻苯二酚类有机染料,罗丹明B具有较长共轭体系和刚性平面结构,在紫外或短波可见光激发下具有较高的荧光发射效率[6],且自身易溶于水,具有稳定的化学性质,是一种理想的荧光示踪剂[7]。虽然依靠分光光度法、液相色谱/质谱连用法和电化学法均能实现罗丹明B的检测,但相比之下,灵敏度高、选择性好、无需样品预处理的荧光光谱探测方法则更加满足开展示踪剂原位检测的技术需求。

      在进行罗丹明B原位荧光检测的过程中,复杂的现场环境会对其荧光性质造成影响,从而影响荧光检测的准确性,尤其是面对高浊度含热废水污染物时,较大的温度和浊度动态变化范围将对示踪剂的检测造成难以忽略的影响,迫切需要对原位荧光传感器的检测结果进行校准和修正。例如,Drexhage发现受末端氨基扭动的影响[8],罗丹明B的荧光强度与温度具有相关性,Bermingham等评估了吸收在鼠新鲜脑组织中的罗丹明B染料由于射频辐射导致温度升高对荧光检测所造成的影响[9],闫峻等则开展了pH值对自来水、海水和地热水中罗丹明B荧光检测效果的影响研究[10]。就目前调研结果看,虽然国内外学者相机开展了一系列各类不同环境因素对罗丹明B荧光光谱性质和原位检测精度的研究,但较大动态范围的温度和浊度对罗丹明B荧光原位检测的影响效果研究相对有限,亟待开展相关原理、模型和方法的研究。

      鉴于此,文中针对罗丹明B示踪剂原位检测的需求,对不同浓度罗丹明B染料的荧光发光特性进行了研究,分析了较大动态范围温度和浊度对其荧光光谱特性的影响,并基于特定环境影响因素,分别建立了荧光探测的补偿校正模型,有效提升了荧光检测的准确性。之后,开展了罗丹明B荧光特性的温度和浊度共同影响规律研究,以浓度差值变化率作为主要参数,建立了面向温度和浊度同时影响时的复杂补偿模型。该方法能够补偿环境因素中温度和浊度对罗丹明B荧光探测的主要影响,对复杂环境中罗丹明B原位示踪的准确检测具有研究意义。

    • 对于罗丹明B标准溶液的配制,使用精度为万分之一的电子分析天平(BSA124 S-CW,赛多利斯)准确称取0.005 g固体罗丹明B(分析纯,国药集团),用去离子水在烧杯中溶解后转移至100 ml容量瓶中,定容至刻度线,完成浓度为50 mg·L−1罗丹明B母液的配制。以1 μg·L−1为间隔配制浓度为1~10 μg·L−1的低浓度罗丹明B样品10份,并以10 μg·L−1为间隔配制浓度为20~100 μg·L−1的高浓度罗丹明B样品9份,得到不同浓度梯度样本共计19份。实验过程中采用恒温水浴锅实现对罗丹明B溶液温度的调节。

      根据国标GB 13200—91配制浊度标准溶液,使用硫酸肼和六次甲基四胺(分析纯,国药集团)配制400 NTU浊度母液,并通过逐步稀释,获得以10 NTU为间隔的10~110 NTU浊度样本11份。在完成浊度标准液配制后,通过磁力搅拌保证样品均匀性,并使用双光束紫外可见分光光度计(UV-8000,元析)对浊度标准液的吸收光谱进行检测。实验过程中,设置扫描波长范围为190~1100 nm、扫描间隔为0.2 nm,进行快速测量,保证溶液浓度的准确性及测量结果的正确性。

    • 罗丹明B分子具有刚性平面结构,在紫外或短波可见光激励下具有较高的荧光活性。其在波长553 nm(Ex)光波的激励下,在577 nm(Em)附近产生较强的荧光发射[11]。因此,使用荧光分光光度计(RF-5301,岛津)对罗丹明B的荧光发射特性进行测量。该仪器采用150 W的氙灯作为辐照光源,其发射出的宽波段入射光经激发单色仪分光后,将中心波长为553 nm的准单色激发光照射到盛放于四通光石英比色皿(光程为10 mm×10 mm)内的待测样品上,样品受激发射的荧光被侧向收集光路接收,经发射单色仪分光和光电倍增管探测器光电转换,实现对560~900 nm波长范围内的荧光光谱的采集。实验过程中,仪器的入射狭缝和出射狭缝均设置为3 nm,扫描速度设置为1500 nm/min,以确保在具备一定荧光光谱分辨率的前提下,提高样品检测效率。

      在光谱采集实验开展之前首先对仪器进行20 min预热,以消除光源输出功率波动对检测精度造成的不利影响。对特定样品进行多次重复采集,剔除异常数据后,对剩余光谱进行预处理,作为最终的检测结果。

    • 除了样品自身的荧光光谱特征外,原始光谱数据中还包含着各种随机噪声的影响。为了提升光谱数据的信噪比从而为浓度定量反演奠定良好基础,需要对原始光谱数据首先开展预处理,因此,文中采用光谱数据处理中常规的Savitzky-Golay(SG)方法首先对数据进行平滑和去噪处理。

      窗口大小是使用SG法进行平滑处理时的重要参数。当平滑窗口较小时信噪比改善效果有限;而当平滑窗口较大时又会导致数据平滑过度,从而造成有效光谱信息的损失。

      按照7∶3随机将19份罗丹明B样本分为两组,一组作为建模数据组,另一组作为检验数据组。检验数据组样本浓度为4、8、10、30、60和80 μg·L−1,其余样本溶液作为建模数据组。表1为选用不同窗口大小(5、10、20、30、40)对罗丹明B溶液荧光光谱进行平滑处理的结果,其中$ R_C^2 $$ R_P^2 $分别为建模数据组与检验数据组的决定系数,RMSEC和RMSEP分别为两个数据组的均方根误差。通过对不同平滑结果进行比较,选择RMSEC和RMSEP值均相对较小的20作为理想平滑窗口宽度,对实验采集的原始光谱进行平滑去噪处理。

      Smooth window$ R_C^2 $RMSEC
      /μg·L−1
      $ R_P^2 $RMSEP
      /μg·L−1
      50.99981.05280.99901.3440
      100.99981.24600.99891.1147
      200.99981.10980.99891.0838
      300.99972.97570.99893.4249
      400.999814.59860.998914.4773

      Table 1.  Different smoothing parameters

      实验过程中,以去离子水作为荧光光谱检测的参考本底,对采集的不同浓度罗丹明B水溶液的荧光强度进行本底差减,以提高光谱检测的准确性。此外,为避免激发光的强弹性散射对光电倍增管探测器造成损害,将发射单色仪的光谱扫描范围限制在560~620 nm的光谱范围内。

    • 浓度梯度分别为1 μg·L−1和10 μg·L−1的1~10 μg·L−1和10~100 μg·L−1罗丹明B标准液发射荧光光谱如图1所示,根据其光谱数据,建立标准曲线。光谱标准曲线建立的常用方法有峰值强度法和峰面积积分法,文中使用两种方法分别建立标准曲线进行研究,其中,为了分析不同光谱采集宽度对浓度定标曲线拟合造成的影响,以577 nm荧光峰位为中心波长,分别在中心波长两边取±9、±11、±13、±15、±17 nm共5组不同波长范围开展峰面积积分分析。

      Figure 1.  Emission fluorescence spectra of Rhodamine B standard solution at 553 nm excitation

      在变量关系的研究中,一元线性回归方法只能建立单一变量与自变量之间的线性分析,为进一步挖掘光谱信息,提高预测能力,该研究采用偏最小二乘法进行建模分析[12-13]。建模结果如表2所示。

      表2可知,建模数据组与检验数据组的决定系数均达到了0.99以上,均方根误差均小于1.4,因此无论是基于光谱峰值强度还是光谱面积积分,PLS建模方法均能够以较高的反演精度和有限回归误差,实现荧光强度与样品浓度标准曲线的建立。相比之下,峰值强度法无需进行复杂的积分运算,数据处理快捷方便,因此,在后面的工作中均采用峰值强度法建立罗丹明B标准溶液的荧光校准曲线,如图2所示。

      Evaluation indexPeak intensity methodPeak area integration method (Relative central wavelength width)
      ±9 nm±11 nm±13 nm±15 nm±17 nm
      $ R_C^2 $0.99970.99900.99900.99930.99940.9994
      RMSEC/μg·L−10.56011.07301.10980.94020.87100.8746
      $ R_P^2 $0.99880.99770.99840.99880.99900.9991
      RMSEP/μg·L−10.97821.36581.16071.01360.91840.8708

      Table 2.  Results of establishing standard curves by partial least squares

      Figure 2.  PLS establish Rhodamine B standard curve

      图2中的斜线为基于PLS方法建立的罗丹明B溶液标准曲线,三角形散点为检验数据组中的离散数据,由图可见,离散的检验数据与标准曲线的吻合效果良好,进一步检验了基于PLS方法建立的标准曲线的有效性。由此,标准曲线(Ex/Em=553/577 nm,T=10 ℃)的函数关系式为:

      式中:$ F $为577 nm波长处的荧光强度;$ C $为罗丹明B溶液浓度;其线性相关系数为0.9997。

    • 采用恒温水浴锅实现不同浓度罗丹明B标准溶液温度的控制和调节。从初始恒温温度10 ℃起,以5 ℃为升温梯度,直至最高恒温温度60 ℃结束,在恒温水浴到达设定温度后静待2 min左右,以确保样品与温控水实现充分热交换后,再对每一个温度梯度的样品进行多组荧光光谱重复采集,采集时间控制在1 min内,以避免温度控制精度不足或温度散热波动对实验精度造成的潜在影响。

      分别挑选5 μg·L−1和50 μg·L−1作为低浓度(1~10 μg·L−1)和高浓度(10~100 μg·L−1)罗丹明B溶液的代表样本进行研究,图3为两种浓度罗丹明B溶液荧光强度随温度(温度单位为℃)的变化曲线,其中插图为不同温度的罗丹明B光谱图。

      Figure 3.  The fluorescence intensity of (a) 5 μg·L−1 and (b) 50 μg·L−1 Rhodamine B solution varied with temperature

      罗丹明B的荧光峰值强度随温度升高逐渐降低,与温度呈负相关变化特性,其中5 μg·L−1和50 μg·L−1罗丹明B溶液的线性回归方程分别为:

      式中:$ T $为摄氏温度。两种不同浓度样品的线性回归模型的相关系数均高达0.9967,表明荧光强度与温度变化呈良好的负相关线性关系。究其原因,是由于温度的提升导致溶液中荧光活性分子的移动速率加快,分子间碰撞概率增大,由分子碰撞产生的能量转移导致非辐射跃迁增加[14],处在激发态的分子通过分子碰撞或分子内能量转移失去其电子的激发能量,削弱了荧光发射的强度。

      从公式(2)和(3)可见,高浓度样品荧光强度随温度的变化率约为低浓度样品的10倍左右,表明单位浓度样品荧光强度随温度的变化幅度差异不大。

      由于样品浓度与罗丹明B荧光强度随温度的绝对变化量直接相关,因此给线性回归模型的建立和选择造成较大困难,同时给样品浓度的修正带来极大的不确定性。根据单位浓度样品随温度的变化幅度相对稳定这一结论,尝试引入罗丹明B浓度差值变化率,并建立该变化率与温度之间的校正补偿关系。

      将每个温度点下的罗丹明B模型预测值$ Rho{B}_{测} $减去罗丹明B初始浓度$ Rho{B}_{初} $(温度为10 ℃测得的罗丹明B浓度),得到不同温度罗丹明B浓度的变化值,再除以$ Rho{B}_{初} $,得到不同温度罗丹明B浓度差值变化率$ \Delta Rho{B_B} $如下式所示:

      $ \Delta Rho{B_B} $与对应的温度值进行线性拟合,得到线性拟合公式:

      式中:$ B $$ {B_0} $为补偿校正系数。

      将公式(5)代入公式(4),得到初始罗丹明B浓度与温度$ T $的关系式:

      式中:$ Rho{B}_{初} $为水体中实际的罗丹明B浓度,即基于温度的校正值,公式(6)即基于温度的补偿校正方程。

      使用浓度差值变化率分别对低浓度和高浓度罗丹明B作温度补偿校正,得到变化率方程分别为$ \Delta Rho{B_B}{{ = - }}0.010\;3 \times T + 0.145\;0 $$ \Delta Rho{B_B}{{ = - }}0.009\;7 \times T + 0.0850 $,校正方程分别为$ Rho{B}_{初}\text{=}Rho{B}_{测}/ (1{-}0.010\;3\times T\text{+}0.145\;0) $$ Rho{B}_{初}\text{=}Rho{B}_{测}/\left(1{-}0.009\;7\times T\text{+}0.085\;0\right) $,其中变化率线性方程的拟合系数均达到了0.9997。

      表3的温度补偿结果可知,低浓度模型温度校正前相对误差范围高达0.80%~47.20%,误差较大;在完成温度补偿校正后浓度反演的误差显著减小为0.00%~0.20%,对温度因素造成的浓度反演结果实现了良好的补偿和校正。高浓度模型温度校正前相对误差范围为1.14%~49.94%,在不同温度下测得的浓度是不准确的;温度校正后相对误差为0.00%~0.48%,与校正前相比准确度有了明显提升,提高了罗丹明B溶液浓度检测的准确性。

      Temperature/
      °C
      Model prediction value/μg·L−1Relative error before correctionRate of change of concentration differenceCorrected concentration value/μg·L−1Relative error after correction
      LowHighLowHighLowHighLowHighLowHigh
      105.2249.434.40%1.14%0.04−0.015.0150.030.20%0.06%
      154.9646.990.80%6.02%−0.01−0.065.0150.010.20%0.02%
      204.7044.556.00%10.90%−0.06−0.115.0150.000.20%0
      254.4442.1111.20%15.78%−0.11−0.165.0149.980.20%0.04%
      304.1839.6716.40%20.66%−0.16−0.215.0149.960.20%0.08%
      353.9337.2321.40%25.54%−0.21−0.265.0049.9400.12%
      403.6734.7926.60%30.42%−0.27−0.305.0049.9100.18%
      453.4132.3531.80%35.30%−0.32−0.355.0049.8800.24%
      503.1529.9137.00%40.18%−0.37−0.405.0049.8500.30%
      552.8927.4742.20%45.06%−0.42−0.455.0049.8100.38%
      602.6425.0347.20%49.94%−0.47−0.505.0049.7600.48%

      Table 3.  Effects of temperature on low concentration and high concentration models and compensation results

    • 使用紫外可见分光光度计对10 NTU浓度梯度的10~110 NTU浊度溶液吸收光谱进行检测,如图4所示,根据国标GB 13200—91,在680 nm波长处建立浊度检测模型,其中插图为不同浊度的光谱图。标准曲线关系式为$ {C_t} = 786.468\;6 A + 4.060\;6 $,其中$ {C_t} $为浊度浓度,$ A $为吸光度,线性相关系数为0.9985,拟合后的标准曲线线性良好,其线性拟合方程可用于其他浊度溶液的浓度测量。

      Figure 4.  Turbidity standard curve

      图5为不同浓度罗丹明B溶液荧光强度随浊度的变化曲线,由图可知,荧光强度值随浊度浓度的升高而逐渐升高,即荧光强度与浊度呈正相关性,浊度与低浓度和高浓度罗丹明B溶液荧光强度的关系式分别为:

      Figure 5.  Fluorescence intensity of (a) 5 μg·L−1 and (b) 50 μg·L−1 Rhodamine B solution varied with turbidity

      式中:$ t $为浊度。线性相关系数分别为0.9977和0.9908,不同浓度的样品荧光强度对浊度同样具有依赖性。由于测试水体中存在不同大小的悬浮微粒,当浊度浓度越高时,水体中悬浮微粒越多,光源照射到这些悬浮微粒时的散射越强,从而荧光强度变大,因此荧光强度与浊度呈正相关性[15]。低浓度和高浓度的浓度差值变化率线性方程分别为$ \Delta Rho{B_B}{\text{ = }}0.002\;7 \times t + 0.036\;3 $$ \Delta Rho{B_B}{\text{ = }}0.002\;6 \times t - 0.012\;3 $,线性相关系数分别为0.9962和0.9997。

      使用浓度差值变化率对罗丹明B进行浊度补偿。低浓度模型浊度校正前相对误差范围为3.60%~18.60%,浊度校正后相对误差为0.00%~0.20%。高浓度模型浊度校正前相对误差范围为0.04%~13.46%,浊度校正后相对误差降低至0.02%~0.34%。低浓度和高浓度罗丹明B溶液浊度校正前误差较大,校正后误差较小,可见通过补偿校正,不同浊度影响下罗丹明B溶液浓度的检测精度得到了显著的提升。

    • 在真实的原位荧光检测中,现场环境的复杂性决定了示踪剂荧光检测的精度往往同时受多种因素的叠加影响,因此,建立复杂影响因素下的多元浓度回归补偿校正模型是保证示踪剂原位检测精度的迫切需求。在实验中,为对温度和浊度两个主要环境因素进行补偿校正,使用5 μg·L−1罗丹明B样本溶液,在温度10~60 ℃和浊度0~55 NTU范围内进行多组检测,利用公式(1)和(4),得到不同温度和浊度下的罗丹明B浓度差值变化率,最终得到温度、浊度和浓度差值变化率之间的关系,如图6所示。

      Figure 6.  Relationship between temperature, turbidity and the rate of change of concentration difference

      使用多元线性回归进行拟合,建立温度和浊度的补偿模型,两参量补偿校正后罗丹明B浓度差值变化率表达式为:

      式中:$ \Delta Rho{B_B} $为罗丹明B的浓度差值变化率;$ T $为温度值;$ t $为浊度值。利用公式(9)可以求出罗丹明B的浓度差值变化率,进而求出罗丹明B实际浓度值。

      研究单独环境因素温度或浊度对检测的影响时,发现低浓度和高浓度罗丹明B的浓度差值变化率表达式中修正系数非常接近,因此采用低浓度罗丹明B溶液(5 μg·L−1)作为研究对象,建立温度和浊度共同补偿校正模型,并对其他浓度罗丹明B进行补偿校正。

      为检验温度和浊度共同补偿模型的准确性,分别配制了38、45、56 μg·L−1的罗丹明B溶液,并分别在特定温度和浊度下开展荧光检测。检测结果如表4所示,可见经过温度和浊度共同补偿校正后,浓度反演的相对误差均得到显著降低。

      Original
      concentration/
      μg·L−1
      Temperature/
      °C
      Turbidity/
      NTU
      Rate of model
      change
      Measure the
      concentration value/
      μg·L−1
      Relative error
      of measurement
      Concentration value
      after compensation
      correction/μg·L−1
      Relative error
      after compensation
      38.004048−0.14%35.027.84%40.727.16%
      45.002536−0.02%42.256.11%43.114.20%
      56.003042−0.05%50.789.32%53.454.55%

      Table 4.  Validation of the compensation model

    • 以罗丹明B标准液为研究对象,针对其原位检测需求,对罗丹明B光谱进行分析,基于偏最小二乘法建立了其浓度与荧光强度的线性关系,并通过对不同温度和浊度罗丹明B溶液的荧光光谱分析,得到温度、浊度与罗丹明B荧光强度值分别存在负相关与正相关的线性关系,利用罗丹明B浓度差值变化率,建立基于罗丹明B浓度的温度和浊度补偿校正模型。结果表明:经温度补偿后低浓度和高浓度模型检测结果相对误差分别为0.00%~0.20%和0.00%~0.48%,经浊度补偿后分别为0.00%~0.20%和0.02%~0.34%,校正后相对误差降低。

      在单一环境因素补偿校正的基础上,开展对多种环境因素(温度和浊度)干扰的补偿校正,建立补偿校正模型,补偿后浓度值与实际浓度一致性好,该补偿校正方法可以有效抑制水中温度和浊度对罗丹明B检测的影响,为提高罗丹明B原位检测准确性提供了一种方法依据,即运用过程中的步骤、流程和方法等具有适用性。但实际水体比较复杂,水体中盐度、pH等其他因素对检测的影响还有待进一步研究。

Reference (15)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return