Volume 51 Issue 5
Jun.  2022
Turn off MathJax
Article Contents

Sun Changzheng, Zheng Yanzhen, Xiong Bing, Wang Lai, Hao Zhibiao, Wang Jian, Han Yanjun, Li Hongtao, Luo Yi. Advances in III-nitride-based microresonator optical frequency combs (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220270. doi: 10.3788/IRLA20220270
Citation: Sun Changzheng, Zheng Yanzhen, Xiong Bing, Wang Lai, Hao Zhibiao, Wang Jian, Han Yanjun, Li Hongtao, Luo Yi. Advances in III-nitride-based microresonator optical frequency combs (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220270. doi: 10.3788/IRLA20220270

Advances in III-nitride-based microresonator optical frequency combs (Invited)

doi: 10.3788/IRLA20220270
Funds:  National Key Research and Development Program of China(2021YFB2800604);National Natural Science Foundation of China (61975093)
  • Received Date: 2022-03-10
  • Rev Recd Date: 2022-04-20
  • Accepted Date: 2022-05-16
  • Publish Date: 2022-06-08
  • Chip-scale optical frequency combs based on microresonators have great potentials in spectroscopy, microwave photonics, optical atomic clocks and coherent optical communications. The non-centrosymmetric wurtzite crystal structure of aluminum nitride (AlN) and gallium nitride (GaN) allows them to exhibit both second- and third-order nonlinear optical coefficients, together with wide transparency window and large refractive index contrast against sapphire substrate, making III-nitrides an attractive platform for nonlinear photonics. The basic properties of AlN and GaN microresonators as well as recent advances in III-nitride-based microresonator frequency combs are presented, including broadband frequency comb generation and optical parametric oscillation in AlN microresonators, and soliton microcomb generation in GaN microresonators.
  • [1] Spencer D T, Drake T, Briles T C, et al. An optical-frequency synthesizer using integrated photonics [J]. Nature, 2018, 557(7703): 81-85. doi:  10.1038/s41586-018-0065-7
    [2] Suh M-G, Vahala K J. Soliton microcomb range measurement [J]. Science, 2018, 359(6378): 884-887. doi:  10.1126/science.aao1968
    [3] Trocha P, Karpov M, Ganin D, et al. Ultrafast optical ranging using microresonator soliton frequency combs [J]. Science, 2018, 359(6378): 887-891. doi:  10.1126/science.aao3924
    [4] Suh M-G, Yang Q F, Yang K Y, et al. Microresonator soliton dual-comb spectroscopy [J]. Science, 2016, 354(6312): 600-603. doi:  10.1126/science.aah6516
    [5] Dutt A, Joshi C, Ji X, et al. On-chip dual-comb source for spectroscopy [J]. Science Advances, 2018, 4(3): e1701858. doi:  10.1126/sciadv.1701858
    [6] Liu J, Lucas E, Raja A S, et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs [J]. Nature Photonics, 2020, 14: 486-491.
    [7] Brasch V, Lucas E, Jost J D, et al. Self-referenced photonic chip soliton Kerr frequency comb [J]. Light: Science & Applications, 2017, 6(1): e16202.
    [8] Obrzud E, Rainer M, Harutyunyan A, et al. A microphotonic astrocomb [J]. Nature Photonics, 2019, 13(1): 31-35.
    [9] Suh M-G, Yi X, Lai Y H, et al. Searching for exoplanets using a microresonator astrocomb [J]. Nature Photonics, 2019, 13(1): 25-30. doi:  10.1038/s41566-018-0312-3
    [10] Moille G, Chang L, Xie W, et al. Dissipative Kerr solitons in a III-V microresonator [J]. Laser & Photonics Reviews, 2020, 14(8): 2000022.
    [11] Chang L, Xie W, Shu H, et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators [J]. Nature Communications, 2020, 11(1): 1331.
    [12] Ji X, Barbosa F A S, Roberts S P, et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold [J]. Optica, 2017, 4(6): 619. doi:  10.1364/OPTICA.4.000619
    [13] Gong Z, Bruch A, Shen M, et al. High-fidelity cavity soliton generation in crystalline AlN microring resonators [J]. Optics Letters, 2018, 43(18): 4366. doi:  10.1364/OL.43.004366
    [14] Liu X, Sun C, Xiong B, et al. Integrated high- Q crystalline AlN microresonators for broadband Kerr and Raman frequency combs [J]. ACS Photonics, 2018, 5(5): 1943-1950. doi:  10.1021/acsphotonics.7b01254
    [15] Hausmann B J M, Bulu I, Lončar M, et al. Diamond nonlinear photonics [J]. Nature Photonics, 2014, 8(5): 369. doi:  10.1038/nphoton.2014.72
    [16] He Y, Yang Q-F, Ling J, et al. Self-starting bi-chromatic LiNbO3 soliton microcomb [J]. Optica, 2019, 6(9): 1138. doi:  10.1364/OPTICA.6.001138
    [17] Zheng Y, Sun C, Xiong B, et al. Integrated gallium nitride nonlinear photonics [J]. Laser & Photonics Reviews, 2022, 16(1): 2100071.
    [18] Jung H, Xiong C, Fong K Y, et al. Optical frequency comb generation from aluminum nitride microring resonator [J]. Optics Letters, 2013, 38(15): 2810-2813. doi:  10.1364/OL.38.002810
    [19] Jung H, Stoll R, Guo X, et al. Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator [J]. Optica, 2014, 1(6): 396. doi:  10.1364/OPTICA.1.000396
    [20] Liu X, Sun C, Xiong B, et al. Integrated continuous-wave aluminum nitride Raman laser [J]. Optica, 2017, 4(8): 893. doi:  10.1364/OPTICA.4.000893
    [21] Liu X, Sun C, Xiong B, et al. Generation of multiple near-visible comb lines in an AlN microring via χ(2) and χ(3) optical nonlinearities [J]. Applied Physics Letters, 2018, 113(17): 171106. doi:  10.1063/1.5046324
    [22] Liu X, Gong Z, Bruch A W, et al. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing [J]. Nature Communications, 2021, 12(1): 5428. doi:  10.1038/s41467-021-25751-9
    [23] Weng H, Liu J, Afridi A A, et al. Directly accessing octave-spanning dissipative Kerr soliton frequency combs in an AlN microresonator [J]. Photonics Research, 2021, 9(7): 1351. doi:  10.1364/PRJ.427567
    [24] Tang C L, Bosenberg W R, Ukachi T, et al. Optical parametric oscillators [J]. Proceedings of the IEEE, 1992, 80(3): 365-374. doi:  10.1109/5.135353
    [25] Godard A. Infrared (2–12 μm) solid-state laser sources: A review [J]. Comptes Rendus Physique, 2007, 8(10): 1100-1128. doi:  10.1016/j.crhy.2007.09.010
    [26] Breunig I, Haertle D, Buse K. Continuous-wave optical parametric oscillators: recent developments and prospects [J]. Applied Physics B, 2011, 105(1): 99. doi:  10.1007/s00340-011-4702-1
    [27] Bruch A W, Liu X, Surya J B, et al. On-chip χ (2) microring optical parametric oscillator [J]. Optica, 2019, 6(10): 1361. doi:  10.1364/OPTICA.6.001361
    [28] Bruch A W, Liu X, Gong Z, et al. Pockels soliton microcomb [J]. Nature Photonics, 2021, 15: 21-27.
    [29] Bruch A W, Liu X, Guo X, et al. 17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators [J]. Applied Physics Letters, 2018, 113(13): 131102. doi:  10.1063/1.5042506
    [30] Bruch A W, Xiong C, Leung B, et al. Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films [J]. Applied Physics Letters, 2015, 107(14): 141113. doi:  10.1063/1.4933093
    [31] Stassen E, Pu M, Semenova E, et al. High-confinement gallium nitride-on-sapphire waveguides for integrated nonlinear photonics [J]. Optics Letters, 2019, 44(5): 1064. doi:  10.1364/OL.44.001064
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(1)

Article Metrics

Article views(471) PDF downloads(169) Cited by()

Related
Proportional views

Advances in III-nitride-based microresonator optical frequency combs (Invited)

doi: 10.3788/IRLA20220270
  • Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Fund Project:  National Key Research and Development Program of China(2021YFB2800604);National Natural Science Foundation of China (61975093)

Abstract: Chip-scale optical frequency combs based on microresonators have great potentials in spectroscopy, microwave photonics, optical atomic clocks and coherent optical communications. The non-centrosymmetric wurtzite crystal structure of aluminum nitride (AlN) and gallium nitride (GaN) allows them to exhibit both second- and third-order nonlinear optical coefficients, together with wide transparency window and large refractive index contrast against sapphire substrate, making III-nitrides an attractive platform for nonlinear photonics. The basic properties of AlN and GaN microresonators as well as recent advances in III-nitride-based microresonator frequency combs are presented, including broadband frequency comb generation and optical parametric oscillation in AlN microresonators, and soliton microcomb generation in GaN microresonators.

    • 微腔光频梳是一种利用连续波单频光泵浦产生的宽谱光频梳,它利用高Q值光学微腔中三阶光学非线性效应引起的四波混频(FWM)过程实现等间隔光谱梳齿的产生。与传统光频梳相比,微腔光频梳具有体积小、功耗低、自由光谱范围(FSR)大等特点,在光频率合成[1]、测距与雷达[2-3]、光谱分析技术[4-5]、微波光子学[6-7]以及天体物理[8-9]等领域有着广阔的应用前景。

      表1比较了常用于制作微腔光频梳的材料平台特性,包括氮化硅(Si3N4)、铝镓砷(AlGaAs)、铌酸锂(LiNbO3)、氮化铝(AlN)和氮化镓(GaN)等。Si3N4是最早用于微腔光梳产生的材料,也是目前最为成熟的微腔光频梳材料,Si3N4微环谐振腔的品质因子(Q)值高达107。通常利用低压化学气相沉积(LPCVD)来制造高质量的Si3N4薄膜。然而,在绝缘体上硅(SOI)晶片上生长时会产生较大的应力,难以获得较厚的氮化硅薄膜。采用大马士革镶嵌工艺可避免大应力产生,但是该工艺需要对SOI刻蚀后进行热回流,会导致一定的工艺误差。近年来,AlGaAs因其具有较高的非线性系数(n2 =2.6×10−17 m2W−1)获得了极大的关注。同时, AlGaAs在中红外波段具有极低的损耗系数,有望产生中红外波段光梳。然而,外延生长的AlGaAs折射率小于GaAs衬底,难以形成光波导。为了解决这一问题,可以利用晶片键合工艺,将AlGaAs与SOI晶片直接键合,从而形成较大的折射率差,实现有效的光限制。但是这会增加工艺复杂度,而且工艺造成的缺陷限制了器件Q值的提升。此外,AlGaAs的热光系数较高,导致产生孤子较为困难。虽然可以利用低温制冷的方式产生孤子,但这限制了AlGaAs微腔的实际应用[10]。LiNbO3因其独特的光学特性受到广泛关注,特别是绝缘体上铌酸锂(LNOI)出现之后,更是成为研究热点,基于LNOI的微腔光梳也有诸多报道。但与AlGaAs一样,LNOI微腔光频梳器件也需要利用键合工艺实现有效的光限制。

      Materialnχ(2) /pm·V−1n2/10−18m2·W−1λTPA/nmMode area/μm2FSR/GHzQint/×106Pth/mWRemarks
      Al0.2Ga0.8As[11]3.31802614830.2810001.5~ 0.03Bonding
      Si3N4[12]20.25460~199~10< 1
      AlN[13-14]2.160.234402.34350.825MOCVD growth
      Diamond[15]2.40.824500.819250.9720
      LiNbO3[16]2.2540.186351200~44.2Bonding
      GaN[17]2.3−91.47291.63241.86.2MOCVD growth

      Table 1.  Properties of microcomb material platforms at telecom wavelengths

      AlN和GaN属于非中心对称晶体,同时具有二阶和三阶光学非线性系数,有望实现电调谐光频梳。AlN的禁带宽度高达6.2 eV,其透明窗口覆盖深紫外到中红外,而GaN则在729 nm~6 μm范围内均保持较低的吸收系数。此外,在通信波段,AlN的三阶非线性系数与Si3N4、LiNbO3等相当,而GaN的非线性系数n2 约为1.4×10−18 W−1,是Si3N4、LiNbO3和AlN等材料的数倍。较高的非线性系数有助于降低微腔光梳产生的阈值,从而实现低功耗微腔光频梳。随着半导体照明产业的不断成熟,可以利用金属有机化合物气相外延(MOCVD)在蓝宝石衬底上生长高质量且厚度可控的GaN和AlN薄膜。高晶体质量的薄膜有助于降低材料的光学损耗,从而实现高Q值光学微腔。同时,AlN和GaN与蓝宝石衬底具有较大的折射率差,可以形成良好的光学限制,如图1所示。因此,蓝宝石上的AlN和GaN薄膜非常适于开展集成化非线性光子器件的研究。

      Figure 1.  GaNOI nonlinear photonics platform

    • 2013年,美国耶鲁大学H. Tang研究小组首次报道了基于溅射AlN的微环谐振腔,其本征Q值约为8×105。他们采用溅射的方式在SOI衬底上制备厚度约650 nm的AlN薄膜,并通过氧气退火提升微环的Q值,最终在1550 nm波段产生了光谱覆盖范围约400 nm的光频梳[18],如图2(a)所示。2014年,该研究小组又报道了基于AlN微环中二阶非线性效应的可见光频梳,如图2(b)所示。该工作采用1550 nm波段激光作为泵浦,通过高阶模模式匹配,利用二次和频(SFG)和二次谐波产生(SHG)过程实现了780 nm附近的近可见光波段光频梳产生。同时,基于三阶非线性效应引起的三次和频和三次谐波产生(THG)过程,观测到了550 nm附近的绿光频梳光谱[19]。但是,所产生的近可见光频梳的光谱范围较窄,仅能观测到少量的梳齿。这是由于溅射的AlN薄膜属于非晶态,其晶体质量较差,限制了微腔Q值的进一步提升。

      Figure 2.  (a) NIR optical frequency comb generation in sputtered AlN microring resonators[18]; (b) Near visible and green frequency comb generation via SHG, SFG and THG[19]

      2017年,笔者课题组率先采用在蓝宝石衬底上通过MOCVD生长的晶体AlN薄膜,实现了加载Q值超过1.2×106的晶体AlN微环谐振腔。同时,首次观察到了晶体AlN微环谐振腔中的拉曼激射现象[20]。2018年,笔者课题组利用高Q值的晶体AlN微环谐振腔,在通信波段实现了超过2/3倍频程的宽谱光频梳的产生,并且观测到了拉曼效应导致的拉曼光梳[14]。同年,笔者课题组利用高阶模相位匹配的方案,实现了780 nm附近光谱覆盖范围达120 nm的近可见光光梳产生[21],如图3所示。

      Figure 3.  (a) Device schematic, (b) dispersion profile, and SEM images of (c) microring waveguide and (d) bus waveguide facet of a crystalline AlN microring resonator[14] ; (e),(f) Broadband NIR and near visible band optical frequency comb generation[21]

      根据四波混频阈值确定的晶体AlN材料三阶非线性系数为2.3×10−19 m2W−1,该结果与文献报道的溅射AlN材料的三阶非线性系数类似。由于外延AlN材料的晶体质量较溅射AlN材料有显著改善,采用外延生长的晶体AlN薄膜不但可以获得更高的Q值,并可以进一步实现宽谱光频梳的产生。因此,蓝宝石衬底上外延生长的晶体AlN薄膜已经成为AlN材料非线性光子器件研究的主流。

      为了满足自参考稳频的需要,一般要求光梳的光谱覆盖范围超过一个倍频程。2021年,H. Tang研究小组通过对AlN微环进行色散设计,利用双色散波实现了超过一个倍频程的孤子光梳[22],并利用相位匹配AlN波导进行了f-2f自参考稳频的实验验证,为未来实现全集成的稳频片上光梳打下了重要的基础。同年,华中科技大学国伟华研究小组与爱尔兰都柏林圣三一大学合作报道了利用近简并的TE0和TE1谐振模实现孤子台阶的拓展,最终实现了覆盖1100~2300 nm波长的倍频程孤子光梳[23]

    • 光学参量振荡(OPO)是一种产生长波长相干光的有效方式[2426]。AlN材料具有较高的二阶非线性系数,通过适当的相位匹配设计,利用AlN微环谐振腔实现高效的片上参量振荡具有极强的吸引力。2018年,H. Tang研究小组利用AlN微环中的二阶非线性效应,采用780 nm的泵浦光,通过热调谐的方式在1550 nm处实现了高效率的片上参量振荡[27]。2020年,他们进一步利用光学参量振荡的方式实现长波长波段孤子,即普克尔斯孤子(Pockels soliton)[28]。如图4所示,该工作采用780 nm的泵浦,通过OPO实现了1560 nm附近光孤子的产生[28]

      Figure 4.  (a) Schematic of Pockels soliton microcomb generation via OPO; (b)-(c) Comb initiation and expansion, and (d) the experimental setup[28]

      同时,由于二阶非线性系数的存在,AlN微环也可用于高效率的二次谐波产生(SHG)。2018年,该小组报道了片上转换效率高达17000%/W的SHG结果[29]

    • GaN的三阶非线性系数比AlN高近一个数量级,因而有望实现高效低功耗微腔光频梳。美国耶鲁大学H. Tang研究小组较早开展了通信波段高Q值GaN微腔的研究[30]。然而,所报道的GaN波导损耗偏高,约为1 dB/cm,微环谐振腔的Q值约为72000,难以满足孤子产生的需要。

      2019年,丹麦技术大学的E. Stassen等人在700 nm厚的GaN外延片上,实现了Q值超过137000的GaN微环,相比于之前的结果有了较大的进步[31]。将250 mW的泵浦光输入3 mm长的GaN直波导中,可以观察到明显的四波混频(FWM)现象,测试结果如图5所示。

      Figure 5.  (a) FWM spectrum from a 3-mm-long GaN waveguide with 250 mW pump power; (b) FWM conversion efficiency vs. pump power[31]

      为了进一步提升GaN材料微腔的Q值,笔者课题组通过研究GaN材料的刻蚀工艺,优化工艺参数,最终制作出Q值超过106的光学微腔[17],其工艺流程如图6所示。

      Figure 6.  (a)-(d) Fabrication procedures of GaN microring resonators; (e)-(f) SEM images of the ring waveguide and the bus waveguide in a GaN microring resonator[17]

      从孤子产生的角度而言,由于GaN材料较高的热光系数,孤子台阶较短,难以通过泵浦光扫频或者功率跳变(power kicking)的方式直接产生孤子。利用双泵浦方式对孤子产生过程中的热效应进行补偿,最终实现了孤子光梳的产生。实验测试得到的四波混频阈值约为6.2 mW,孤子光梳光谱范围为1450~1650 nm,这是首次在GaN微环中观测到的孤子光梳,实验结果如图7所示。

      Figure 7.  (a) Chaotic frequency comb under TM00 pump; (b) Soliton microcomb under TM00 pump; (c) Raman assisted chaotic Kerr comb with TE00 pump[17]

    • AlN和GaN作为非中心对称结构材料,同时具有二阶和三阶光学非线性系数,其透明窗口覆盖了从紫外到中红外较宽的光谱范围,作为微腔光频梳的材料平台,显示出独特的优越性。随着半导体照明技术的发展,高质量AlN和GaN薄膜的制备技术日臻成熟,基于AlN和GaN材料平台的微腔光频梳器件的特性也将获得更大的提升。

      近年来,基于AlN的非线性光子器件研究已有较多的内容,涉及的内容也较为广泛,而GaN材料非线性器件的研究则仍处于起步阶段。受益于GaN较高的非线性系数,预期在未来可以获得较大的发展。

      由于GaN和AlN都具有较高的二阶非线性系数,因此探讨利用电光效应进行光梳的FSR以及中心频率的调谐也是一种可能的方向。此外,由于AlN和GaN以及蓝宝石衬底都有很宽的透明窗口,利用AlN和GaN平台探索可见光以及中红外波段的孤子光梳也具有重要的研究价值。

Reference (31)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return