Volume 52 Issue 3
Mar.  2023
Turn off MathJax
Article Contents

Gao Hongwei, Yang Zhongming, Liu Hongbo, Zhuang Xingang, Liu Zhaojun. Design of portable infrared target simulator system[J]. Infrared and Laser Engineering, 2023, 52(3): 20220554. doi: 10.3788/IRLA20220554
Citation: Gao Hongwei, Yang Zhongming, Liu Hongbo, Zhuang Xingang, Liu Zhaojun. Design of portable infrared target simulator system[J]. Infrared and Laser Engineering, 2023, 52(3): 20220554. doi: 10.3788/IRLA20220554

Design of portable infrared target simulator system

doi: 10.3788/IRLA20220554
Funds:  National Natural Science Foundation of China (62175131); Joint Fund Project of the Ministry of Education for Equipment Pre-research (8091B032125); Anhui Provincial Key Research and Development Project (202104a04020001); The Fundamental Research Funds of Shandong University (2020JCG003)
  • Received Date: 2022-08-05
  • Rev Recd Date: 2022-10-03
  • Publish Date: 2023-03-25
  •   Objective   Infrared target simulator is an important part of infrared target simulation experiment. When the outgoing pupil of the collimation system coincides with the incident pupil of the detection equipment, it can provide a stable infinitely far simulated target for infrared detection equipment, and the simulation results have the advantages of being accurate, controllable and repeatable experiments, which are used to evaluate the performance and accuracy of infrared detection equipment. It has important applications in radar testing, infrared guidance, infrared tracking, etc. With the development of photoelectric detection equipment sensor integration and miniaturization, multi-band sensors have become the standard configuration of most photoelectric detection equipment. Due to the changes in the debugging environment and the use of the environment, it is necessary to adjust it frequently, but most of the target simulators in the laboratory are only equipped with a single-band light source, large size is not convenient to carry. Therefore, it is necessary to establish multi-band and small-sized portable target simulators to meet the needs of different usage environments. For this purpose, an off-axis reflective infrared target simulator system is designed in this paper.  Methods   A portable infrared target simulator system is built in this paper. A 110 mm aperture parallel light tube of reflective structure was chosen as the collimation system (Fig.2). The optical-mechanical thermal integration analysis of the system was performed to determine the deformation variation of the primary and secondary mirrors and mechanical structure caused by temperature difference (Fig.8). The self-collimating interferometric detection method was mounted using a Zygo interferometer (Fig.11), and the mounting results were judged by the PV and RMS value results of the face shape measurement of the standard plane mirror (Fig.13).   Results and Discussions   The portable infrared target simulation system was mounted using self-collimating interferometry, with PV value of 0.356λλ=632.8 nm)and RMS value of 0.047λ (Fig.13), which is better than λ/20, and the results are excellent and meet the usage requirements. The results of Zernike coefficient analysis shows that the system aberrations are mainly out-of-focus, tilt and higher order aberrations of more than 5 levels (Tab.5), and the adjustable target disc is designed to compensate and improve the imaging quality. A portable infrared target simulator system is built in the laboratory to test the optical path and verify the imaging function of the system. The infrared camera and head were placed at a distance of 10 m from the system, and the imaging results are shown (Fig.14). The targets of different shapes can be clearly identified, and the imaging function of the system has completely satisfies the demand of simulating targets at infinity.  Conclusions   A portable infrared target simulatot system with working wavelengths of 3-5 μm and 8-14 μm is designed. The system is characterized by simple structure, adjustable wavelength, rich target and clear and stable imaging. The wavefront quality of the system was analyzed using Zemax software, and the PV value of the central field of view was 0.013 2λ and the RMS value was 0.003 8λ in the 4 μm band, and the PV value of the central field of view was 0.004 4λ and the RMS value was 0.001 3λ in the 12 μm band. An optical-mechanical thermal analysis of the collimation system was performed, and at a temperature difference of 30 ℃, the deformation caused by the mechanical structure of the displacement of the optical element is much larger than the deformation of the primary and secondary mirrors themselves, reaching the order of 10 μm, and the imaging results have obvious out-of-focus errors, which can be compensated for the out-of-focus errors introduced by the temperature change by refocusing the target disc with adjustable three-dimensional position. The imaging function of the system was tested, for different shapes of targets, the system can become a clear and identifiable image, providing a stable simulated target for infrared detection equipment.
  • [1] Hao Yanyun, Zhao Sunqing. Overview of hardware-in-the-loop infrared multi-band target simulation technologies abroad [J]. Infrared, 2022, 43(2): 7-14. (in Chinese) doi:  10.3969/j.issn.1672-8785.2022.02.002
    [2] 吴鹏. 基于DRFM技术的雷达飞行目标模拟及评估方法研究[D]. 西安: 电子科技大学, 2022.

    Wu Peng. Research on rader flight target simulation and evaluation method based on DRFM technology [D]. Xi’an: University of Electronic Science and Technology of China, 2022. (in Chinese)
    [3] Yang Rui, Zhou Wei. Present situation and development trend of infrared simulation target [J]. Meteorological, Hydrological and Marine Instruments, 2021, 6(2): 116-118. (in Chinese) doi:  10.3969/j.issn.1006-009X.2021.02.036
    [4] Gao Hui, Zhao Qingsong. Exploration of applications of IR image simulator [J]. Infrared Technology, 2014, 36(5): 409-414. (in Chinese)
    [5] Li Gang, Yan Zongqun, He Yongqiang, et al. Hardware-in-the-loop simulation of panoramic multi-target infrared staring tracker [J]. Journal of Applied Optics, 2011, 32(2): 348-352. (in Chinese) doi:  10.3969/j.issn.1002-2082.2011.02.031
    [6] Zou Yingying, Qiu Lirong, Wang Ya, et al. Development of portable infrared target simulator [J]. Optical Technique, 2015, 41(2): 152-155. (in Chinese) doi:  10.13741/j.cnki.11-1879/o4.2015.02.013
    [7] Du Xiaoyu, Yang Jiqqiang, Peng Qingqing, et al. An optical design of a novel multifunctional target simulator [J]. Laser & Infrared, 2019, 49(7): 891-895. (in Chinese) doi:  10.3969/j.issn.1001-5078.2019.07.019
    [8] Cai Wenlin, Zhu Zihui, Li Jianhua, et al. Design of infrared target simulator of military testing [C]//Proceedings of SPIE, 2021, 12061: 120610X.
    [9] Qian Yulong, Wang Zhile, Zhang Chengbiao. Domestic and international developing status of the dual-band IR target simulator [J]. Aero Weaponry, 2014(5): 23-27. (in Chinese) doi:  10.3969/j.issn.1673-5048.2014.05.005
    [10] Zheng Hanqing, Cun Qingfeng, Hu Yang, et al. Method for expanding field-of-view of Cassegrain system with computational imaging [J]. Acta Optica Sinica, 2020, 40(15): 1522001. (in Chinese) doi:  10.3788/AOS202040.1522001
    [11] Luo Hui, Li Jie, Li Jincheng, et al. Research on integrated optical system technology of receiving and transmitting for near ground ultraviolet communication [J]. Electro-optic Technology Application, 2021(6): 10-23. (in Chinese) doi:  10.3969/j.issn.1673-1255.2021.06.003
    [12] Sun Yongxue, Xia Zhentao, Wang Ke, et al. Research on off-axis reflective collimator design and inspection scheme of secondary mirror [J]. Journal of Applied Optics, 2021, 42(2): 334-338. (in Chinese) doi:  10.5768/JAO202142.0205001
    [13] Zhu Peng, Xiao Lei, Sun Tai, et al. Research progress of micro-nano structures enhanced infrared detectors (Invited) [J]. Infrared and Laser Engineering, 2022, 51(1): 20210826. (in Chinese)
    [14] Du Baolin, Zhang Yuansheng, Li Yanxiao. Algorithm for selecting blackbody radiation source of infrared target simulator [J]. Optics & Optoelectronic Technology, 2012, 10(3): 71-73. (in Chinese)
    [15] Wang Zengwei, Zhao Zhicheng, Yang Yi, et al. Thermal-structural-optical integrated analysis method based on the complete equations of rigid body motion [J]. Infrared and Laser Engineering, 2022, 51(6): 20210617. (in Chinese)
    [16] Zhang Xiangming, Jiang Feng, Kong Longyang, et al. Research on optical alignment technology for Cassegrain system [J]. Journal of Applied Optics, 2015, 36(4): 526-530. (in Chinese) doi:  10.5768/JAO201536.0401006
    [17] Yang Yifeng, Zhao Yan. Opto-mechanical system design of rotating virtual objective for autocollimate dynamic target [J]. Laser & Optoelectronics Progress, 2021, 58(23): 2312003. (in Chinese)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)  / Tables(5)

Article Metrics

Article views(290) PDF downloads(72) Cited by()

Related
Proportional views

Design of portable infrared target simulator system

doi: 10.3788/IRLA20220554
  • 1. Key Laboratory of Laser & Infrared System, Ministry of Education, Shandong University, Qingdao 266237, China
  • 2. School of Information Science and Engineering, Shandong University, Qingdao 266237, China
  • 3. East China Institute of Electronic Measurement Instrument, Qingdao 266555, China
Fund Project:  National Natural Science Foundation of China (62175131); Joint Fund Project of the Ministry of Education for Equipment Pre-research (8091B032125); Anhui Provincial Key Research and Development Project (202104a04020001); The Fundamental Research Funds of Shandong University (2020JCG003)

Abstract:   Objective   Infrared target simulator is an important part of infrared target simulation experiment. When the outgoing pupil of the collimation system coincides with the incident pupil of the detection equipment, it can provide a stable infinitely far simulated target for infrared detection equipment, and the simulation results have the advantages of being accurate, controllable and repeatable experiments, which are used to evaluate the performance and accuracy of infrared detection equipment. It has important applications in radar testing, infrared guidance, infrared tracking, etc. With the development of photoelectric detection equipment sensor integration and miniaturization, multi-band sensors have become the standard configuration of most photoelectric detection equipment. Due to the changes in the debugging environment and the use of the environment, it is necessary to adjust it frequently, but most of the target simulators in the laboratory are only equipped with a single-band light source, large size is not convenient to carry. Therefore, it is necessary to establish multi-band and small-sized portable target simulators to meet the needs of different usage environments. For this purpose, an off-axis reflective infrared target simulator system is designed in this paper.  Methods   A portable infrared target simulator system is built in this paper. A 110 mm aperture parallel light tube of reflective structure was chosen as the collimation system (Fig.2). The optical-mechanical thermal integration analysis of the system was performed to determine the deformation variation of the primary and secondary mirrors and mechanical structure caused by temperature difference (Fig.8). The self-collimating interferometric detection method was mounted using a Zygo interferometer (Fig.11), and the mounting results were judged by the PV and RMS value results of the face shape measurement of the standard plane mirror (Fig.13).   Results and Discussions   The portable infrared target simulation system was mounted using self-collimating interferometry, with PV value of 0.356λλ=632.8 nm)and RMS value of 0.047λ (Fig.13), which is better than λ/20, and the results are excellent and meet the usage requirements. The results of Zernike coefficient analysis shows that the system aberrations are mainly out-of-focus, tilt and higher order aberrations of more than 5 levels (Tab.5), and the adjustable target disc is designed to compensate and improve the imaging quality. A portable infrared target simulator system is built in the laboratory to test the optical path and verify the imaging function of the system. The infrared camera and head were placed at a distance of 10 m from the system, and the imaging results are shown (Fig.14). The targets of different shapes can be clearly identified, and the imaging function of the system has completely satisfies the demand of simulating targets at infinity.  Conclusions   A portable infrared target simulatot system with working wavelengths of 3-5 μm and 8-14 μm is designed. The system is characterized by simple structure, adjustable wavelength, rich target and clear and stable imaging. The wavefront quality of the system was analyzed using Zemax software, and the PV value of the central field of view was 0.013 2λ and the RMS value was 0.003 8λ in the 4 μm band, and the PV value of the central field of view was 0.004 4λ and the RMS value was 0.001 3λ in the 12 μm band. An optical-mechanical thermal analysis of the collimation system was performed, and at a temperature difference of 30 ℃, the deformation caused by the mechanical structure of the displacement of the optical element is much larger than the deformation of the primary and secondary mirrors themselves, reaching the order of 10 μm, and the imaging results have obvious out-of-focus errors, which can be compensated for the out-of-focus errors introduced by the temperature change by refocusing the target disc with adjustable three-dimensional position. The imaging function of the system was tested, for different shapes of targets, the system can become a clear and identifiable image, providing a stable simulated target for infrared detection equipment.

    • 红外目标模拟器是红外目标仿真实验的重要组成部分,当准直系统的出瞳与探测设备的入瞳重合时,可以为红外探测设备提供一个稳定的无穷远处模拟目标,模拟结果具有精确可控、可重复实验的优点,用来评估红外探测设备的性能和精度。在雷达测试[1-2]、红外制导[3-4]、红外跟踪[5]等方面都有着重要应用。

      红外目标模拟器主要分为对点源进行模拟和对成像体源进行模拟两种,其中应用更为广泛的是红外点源目标模拟器。红外点源目标模拟器在光源选择上主要有两种:一是使用溴钨灯作为辐射源,二是使用黑体作为辐射源,相较于溴钨灯,黑体具有辐射温度范围大,温度调节速度快的优点,在目标模拟器中的使用更为广泛[6]。双波段探测系统和传统的探测系统相比,具有更高的可靠性和准确性,随着光电探测设备传感器的集成、小型化发展,多波段传感器已经成为大多数光电探测设备的标准,并且由于调试环境和使用环境的变化[7-8],需要经常对其进行调整,但实验室中大多数目标模拟器都只配备单波段光源且体积较大不便携带。因此,有必要建立多波段、小体积的便携式目标模拟器以满足不同使用环境的需求。多波段目标模拟器根据工作原理主要可以分为两种:一种是使用多波段光源直接成像,经过准直系统投射到生成器上,该方法设计的模拟器结构简单,但对光源的要求较高;另一种是使用多个光源分别成像,经过分束整合器将多个波段的像整合,经过准直系统成像,对制作工艺要求不高,但是需要考虑不同波段内的图像空间匹配和辐射能量覆盖问题[9]

      文中设计了一种红外目标模拟器,采用离轴反射式的准直系统,口径110 mm,使用可切换黑体提供3~5 μm、8~14 μm的中远红外双波段辐射源。搭载不同图案靶标提供多种目标物模拟,利用位置可调的靶标盘对温差引起的离焦进行补偿。在−10~50 ℃环境下,为红外成像设备提供实时稳定的红外目标,可用于军用红外探测系统的性能测试,具有成像稳定、图像质量好、结构简单、易于装调、模拟目标丰富的优点。

    • 便携红外目标模拟系统主要由平行光管、黑体光源、光阑、靶标、机械结构及支撑调整架构成,如图1所示。其中,光源系统包括中波红外3~5 μm和长波红外8~14 μm的黑体光源,由滑轨进行切换,实现不同波段目标的模拟。平行光管由主镜、次镜、基座和壳体组成,实现对目标的准直。金属靶标具有七种不同的图案,配合光阑和平行光管在无穷远处成像[10]。在接收端由搭载在二维云台上的红外相机对模拟目标进行探测,实现不同波段、不同图案红外目标的远距离模拟功能。

      Figure 1.  Block diagram of portable infrared target simulation system

      根据使用条件分析,系统的特点是焦距长、口径大以及中心视场图像质量高,透射式系统无法消除色差,且大口径透射式元件的加工和涂层难度高,不易实现;而反射式光学系统在长焦距大口径下可以保证图像质量[11],适合模拟无限远处目标,同时,光学系统采用离轴结构,可以避免同轴结构中的中心遮挡问题[12-13]。离轴反射式光学结构如图2所示,从黑体光源发出的光照射在光阑上,对光斑大小调节后均匀地照亮靶标,从靶标出射后携带图案信息,然后经过平行光管结构中的平反镜反射,最后通过离轴抛物面反射镜准直出射,经传播后被探测系统所捕捉。在发射端,通过滑轨切换选择不同光源,搭配不同图案的靶标使用,从而实现多波段、不同图案的目标模拟功能。平行光管参数如表1所示。

      Figure 2.  Layout of optical system

      VariableValue
      Primary mirror diameter/mm106
      Focal length/mm716
      Field of view/(°)1
      Off-axis volume/mm160
      Secondary mirror diameter/mm56

      Table 1.  Paraxial parameters of collimator

      对于光源强度的计算,是基于光束在空气中传播和衰减后的辐射度能否被光电探测系统捕捉。黑体的辐照度计算公式为:

      式中:Sb为黑体辐射通量密度,单位W/cm2A为光经过靶标的通过比例,根据不同的靶标图案确定;τ为准直系统透过率;σ为斯蒂芬-玻耳兹曼常数,单位W/(cm2·K4);TTs分别为黑体温度和环境温度,单位K;R为黑体光源辐出面的直径,单位cm;N为探测器捕捉到像点所占的像元个数;D为平行光管的焦距,单位cm。

      探测器的探测灵敏度为:

      式中:τ(λ,L)为大气损耗;J为目标辐射强度;L为从目标模拟器到探测器的作用距离。

      在黑体光源选择上,当目标模拟器出口处的辐射度大于探测器灵敏度[11]时,满足

      此时模拟目标可以被光电探测系统探测到[14],按照1 km的使用需求进行计算,选定黑体辐出度不小于6.929×10−3 W/m2的黑体作为光源。

    • 根据表1中的光学元件参数,使用Zemax对准直系统进行建模和仿真,仿真结果如图3所示,图3(a)和3(b)分别为准直系统的2D和3D结构图。

      Figure 3.  (a) 2D and (b) 3D layout of collimator system

      在1 km传输距离下,系统边缘视场的边缘角为0.025°,在中远红外波段下,利用Zemax对系统不同视场下的波前进行分析,系统的中心视场和边缘视场的出瞳处波前图如图3所示。在4 μm波段时,0°中心视场下,波前的PV (Peak to Valley)值为0.0132 λλ=632.8 nm),RMS (Root Mean Square)值为0.0038λ,如图4(a)所示。0.025°边缘视场下,波前的PV值为0.0488λ,RMS值为0.0097λ,如图4(b)所示。在12 μm波段时,0°中心视场下,波前的PV值为0.0044λ,RMS值为0.0013λ,如图4(c)所示。0.025°边缘视场下,波前的PV值为0.0163λ,RMS值为0.0032λ,如图4(d)所示,波前记录结果汇总在表2中。

      Figure 4.  Wavefront diagram at the exit of the system pupil

      Wavelength/μmField of viewPV/λRMS/λ
      40.01320.0038
      40.04880.0097
      120.025°/1′30″0.00440.0013
      120.025°/1′30″0.01630.0032

      Table 2.  Results of wavefront analysis

    • 红外目标模拟系统的机械结构如图5所示,由离轴抛物面镜、平面反射镜、镜筒组件、底座支撑组件和附件等组成。结构整体采用圆筒型结构,由冷轧钢板制作,刚度满足设计要求,拆装简单方便。系统内部均匀喷涂哑光黑漆,可以有效减少杂散光量。抛物面主镜直径为106 mm,通过螺圈固定在系统主体上,平面次镜直径为56 mm,通过粘胶固定在支撑部件上,易于安装的同时确保结构压力不会直接影响反射面,使镜面不发生形变。底部采用万向底脚支撑,可以利用水平尺对整个系统进行置平,整套系统具有较高的稳定性。系统总体质量小于30 kg,双光源安装在同一底座上,由滑轨控制移动,控制器独立安装在有滑轮的立柜中,方便不同使用环境中的调节和移动。

      Figure 5.  Design of mechanical structure

      当温度变化时,机械结构和系统中的主次镜组件可能发生形变[15],引起反射面位置的变化,使焦点位置偏离靶标中心。为满足系统在不同温度环境下的使用需求,需要测试当温度变化时机械结构和主次镜的形变量。对温差引起的变形前后的光学性能的分析,通过光机热集成分析的方法来实现。

      光机热集成分析的流程如图6所示,首先对光机系统进行热力学分析,求取热载荷作用下系统的温度分布。再将热分析结果作为载荷,通过多物理场耦合的方法进行热变形分析,得到光学元件和机械结构的变形数据。最后将光学元件面形变化和机械结构的形变整合成系统中光学元件的偏移,代回到光学设计软件中计算,评估变形后的光学性能。

      Figure 6.  Optical machine thermal integrated analysis process

      基于系统使用条件及使用要求,需满足在室外环境使用的性能要求,考虑到装调环境一般为20 ℃左右,取30 ℃温变为输入条件,对系统进行热力学分析。在温差30 ℃变化时,主次镜面形发生形变,并且系统光机胶组件也会产生不同程度的弹性形变,导致主镜、次镜会产生刚体位移及转角,影响系统波前精度。采用MSC. Patran进行建模,对系统进行网格划分,分为节点数1018517,单元数592052。图7所示为系统有限元分析模型。

      Figure 7.  Model of finite element analysis

      考虑到系统的实际使用场景,在室温20 ℃、温差±30 ℃的情况下进行有限元分析。提取主次镜节点进行分析,结果如图8所示,图8(a)和8(b)分别对应抛物面主镜和平面反射镜次镜的有限元分析结果。

      Figure 8.  Result of finite element analysis of the primary mirror (a) and the secondary mirror (b)

      提取得到温度变化引起的主次镜形变量如表3所示,在温差30 ℃情况下,主镜形变量的RMS值为0.0014λ,PV值为0.0076λ,次镜形变量的RMS值为0.0006λ,PV值为0.0037λ。机械结构形变引起主次镜偏移的刚体变化值如表4所示,在三维位置上的偏移为微米量级。对比表3表4的结果可以看出,由温度引起的面形变化仅为纳米量级,远小于机械结构形变引起的位置偏移,相较之下可以忽略不计。

      RMS/λPV/λ
      Primary mirror0.00140.0076
      Second mirror0.00060.0037

      Table 3.  Shape variable of primary and second mirrors with a temperature difference of 30 ℃

      X/mmY/mmZ/mmRz/(″)Ry/(″)
      Primary mirror0.0712−0.2157−0.0185−0.03761.1893
      Second mirror0.0714−0.00430.02750.2911−1.5359

      Table 4.  Rigid body change value of primary and second mirrors with a temperature difference of 30 ℃

      将温差30 ℃情况下主次镜的形变量代回到Zemax中,对准直系统进行像差分析,结果如图9所示。波前的PV值为15.3884λ,RMS值为2.6961λ,在温度变化的情况下,需要根据使用环境对波像差进行校正。

      Figure 9.  Wavefront plot with a temperature difference of 30 ℃

      由温度变化引入的像差主要是主次镜偏移引起的散焦,可以通过调节靶标的位置重新对焦,三维位置可调的靶标盘如图10(a)所示,通过两对旋钮的机械力对靶标的上下左右进行调节,轴向位置调整结束后由螺圈锁紧,补偿离焦引入的像差。靶标采用金属靶标设计,图案设计如图10(b)所示,共包括圆形、三角、十字叉丝等七种不同图案,直径25 mm,厚度0.12 mm,靶标成像表面镀有高发射率的黑色涂层,保持与环境相同的温度,在靶标背面镀高反射率图层,减少黑体辐射对靶标温度的影响,靶标实体温度为环境温度,透光部分温度为目标温度,通过控制光阑的通光孔径来匹配光斑与靶标大小。

      Figure 10.  (a) Structure of target holder; (b) Target patterns

    • 利用Zygo干涉仪对红外目标模拟系统进行装调[16],如图11所示,从Zygo干涉仪发出的平面波经球面镜整形为球面波,依次经过平行光管次镜、主镜之后照射到参考平面镜上,再沿原路返回产生干涉,干涉结果显示在计算机上,根据干涉条纹和干涉结果对主次镜位置进行装调。

      Figure 11.  Fabricating of infrared target simulation system

      系统装调步骤如图12所示。首先对次镜位置进行校准,从Zygo干涉仪发出的标准平面波经球面镜会聚在平行光管的靶标位置上,均匀照亮次镜,经过次镜反射后从平行光管的主镜位置出射,调整次镜俯仰对出射光斑的中心高度进行调整,使得Zygo干涉仪出射光束、次镜中心、主镜位置出射光束的光斑中心位于同一高度上,锁定次镜上下两侧调节螺丝,再对次镜偏摆进行调节,使得光斑位于主镜的中心,安装主镜后,观察到光斑从平行光管的出口处出射。在平行光管出口放置300 mm孔径的参考平面镜,反射光沿原路返回,在Zygo干涉仪内部干涉,调整主镜位置直至在计算机上可以观察到干涉条纹。

      Figure 12.  System installation and commissioning steps

      根据干涉条纹对主镜进行调整,初始干涉图中的条纹为圆弧状,调整主镜的俯仰倾斜,直至出现直条纹,再根据测量结果的PV值和RMS值对主镜进行微调,直至找到RMS值最小位置,固定主镜,对螺孔进行注胶,封装平行光管两侧的外壳,平行光管的主次镜校准完成。

      平行光管的主次镜调节结果如图13所示,其中图13(a)为检测结果的干涉图样,根据图13(b)的干涉结果,PV值为0.356λ,RMS值为0.047λ,优于λ/20,结果良好,满足使用需求[17]。Zeinike系数分析结果如表5所示,根据结果得知系统的像差主要是ZFR4、ZFR5、ZFR7和ZFR9项,即离焦、倾斜和5级以上的高阶像差,在成像时可以通过对靶标位置的调节来进一步补偿。

      Figure 13.  Adjustment result of collimator system

      CoefficientValue/λnmRepresentation
      ZFR 00.000001
      ZFR 1−0.00111ρcos(θ)
      ZFR 2−0.0011−1ρsin(θ)
      ZFR 30.00120−1+2ρ2
      ZFR 4−0.05722ρ2cos(2θ)
      ZFR 50.0642−2ρ2sin(2θ)
      ZFR 6−0.01631(−2ρ+3ρ3)cos(θ)
      ZFR 7−0.0933−1(−2ρ+3ρ3)sin(θ)
      ZFR 80.025401–6ρ2+6ρ4
      ZFR 90.09733ρ3cos(3θ)
      ZFR 10−0.0553−3ρ3sin(3θ)
      ZFR 11−0.00942(−3ρ2+4ρ4)cos(2θ)
      ZFR 120.0354−2(−3ρ2+4ρ4)sin(2θ)

      Table 5.  Zernike coefficients of collimator

    • 在实验室中搭建便携式红外目标模拟系统测试光路,首先验证系统的成像功能。在系统10 m远处放置红外相机及云台,启动相机并等待相机自检完成后,打开光源开关,设定温度125 ℃,通过控制二维云台对相机接收面的位置进行调整,直到相机可以拍摄到圆形亮斑,对曝光进行调节,防止过曝影响靶标图案的识别。在靶标盘上插入靶标后继续调节,在接收端观察成像效果,通过光圈调整和变倍调节后,当图案形状能够完全捕捉且边缘锐利后,对相机进行对焦操作,拍摄结果如图14所示,对不同形状靶标均可以清晰识别,系统的成像功能具备完全,满足模拟无穷远处目标的需求。在长距离的使用条件下,首先用激光测距仪对发射端的目标模拟器和接收端相机位置进行标定,当发射端与接收端之间无阻挡时,调整二维云台位置使相机接收面对准目标模拟器出口,对模拟目标进行拍摄。

      Figure 14.  Imaging results at 10 m distance

    • 设计了一个工作波段为3~5 μm、8~14 μm的便携式红外目标模拟系统。系统具有结构简单、波长可调、目标丰富以及成像清晰稳定的特点。使用Zemax软件对系统的波前质量进行分析,在4 μm波段,中心视场的PV值为0.0132λ,RMS值为0.0038λ,在12 μm波段,中心视场的PV值为0.0044λ,RMS值为0.0013λ。对准直系统进行了光机热分析,在30 ℃温差下,由机械结构的形变引起的光学元件位移远大于主次镜自身形变量,达到10 μm量级,成像结果有明显的离焦误差,通过三维位置可调的靶标盘重新对焦,能够补偿因温度变化引入的离焦误差。对系统的成像功能进行了测试,对于不同形状的靶标,系统能够成清晰可识别的像,为红外探测设备提供一个稳定的模拟目标。

Reference (17)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return