Volume 52 Issue 1
Jan.  2023
Turn off MathJax
Article Contents

Liu Bo, Jiang Yun, Wang Rui, Chen Zhen, Zhao Bin, Huang Fengyun, Yang Yuqiang. Technical progress and system evaluation of all-time single photon lidar[J]. Infrared and Laser Engineering, 2023, 52(1): 20220748. doi: 10.3788/IRLA20220748
Citation: Liu Bo, Jiang Yun, Wang Rui, Chen Zhen, Zhao Bin, Huang Fengyun, Yang Yuqiang. Technical progress and system evaluation of all-time single photon lidar[J]. Infrared and Laser Engineering, 2023, 52(1): 20220748. doi: 10.3788/IRLA20220748

Technical progress and system evaluation of all-time single photon lidar

doi: 10.3788/IRLA20220748
  • Received Date: 2022-10-26
  • Rev Recd Date: 2022-11-16
  • Publish Date: 2023-01-18
  • Single photon lidar (also known as photon counting lidar) has detection sensitivity of single photon magnitude. Compared with traditional linear detection lidar, it can obtain longer detection distance, and it has become the frontier and development trend of lidar technology. However, the extremely high detection sensitivity also makes the single photon lidar highly susceptible to the interference of background noise photons in detection, which greatly reduces its performance in daytime and greatly limits its application scope. Based on the detection principle of single photon lidar, this paper briefly reviews its technical development, analyzes the requirements of all-time work for single photon lidar detection system, and a new spectral filtering technique is adopted to greatly improve the detection performance of single photon lidar in daylight. At the same time, this paper also proposed a general evaluation model, which can be very intuitive to evaluate the detection performance of various lidar systems.
  • [1] Rick H, Brian F A, Richard M M, et al. Three-dimensional laser radar with APD arrays [C]//Proceedings of SPIE, 2001, 4377: 106-117.
    [2] Pawlikowska A M, Halimi A, Lamb R A, et al. Single-photon three-dimensional imaging at up to 10 kilometers range [J]. Optics Express, 2017, 25(10): 11919-11931. doi:  10.1364/OE.25.011919
    [3] Gariepy G, Krstajić N, Henderson R, et al. Single-photon sensitive light-in-fight imaging [J]. Nature Communications, 2015, 6(1): 6021. doi:  10.1038/ncomms7021
    [4] Gariepy G, Tonolini F, Henderson R, et al. Detection and tracking of moving objects hidden from view [J]. Nature Photonics, 2016, 10(1): 23-26. doi:  10.1038/nphoton.2015.234
    [5] Aull B F, Loomis A H, Young D J, et al. Geiger-mode avalanche photodiodes for three-dimensional imaging [J]. Lincoln Laboratory Journal, 2002, 13(2): 335-349.
    [6] Li Z P, Huang X, Jiang P Y, et al. Super-resolution single-photon imaging at 8.2 kilometers [J]. Opt Express, 2020, 28(3): 4076-4087.
    [7] Tachella J, Altmann Y, Mellado N, et al. Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers [J]. Nature Communications, 2019, 10(1): 4984. doi:  10.1038/s41467-018-07882-8
    [8] Liu B, Yu Y, Chen Z, et al. True random coded photon counting Lidar [J]. Opto-Electronic Advances, 2020, 3(2): 190044.
    [9] Sun W, Hu Y, MacDonnell D G, et al. Technique to separate lidar signal and sunlight [J]. Optics Express, 2016, 24(12): 12949-12954. doi:  10.1364/OE.24.012949
    [10] O'Connor D. Time-correlated Single Photon Counting [M]. NewYork: Academic Press, 2012.
    [11] Qiansong C, Chengwei Y, Zhiwen P. A brief introduction on development of laser Time-of-Flight distance measurement technology [J]. Laser & Infrared, 2002, 32(1): 7-10. (in Chinese)
    [12] Bo L, Shuo J, Yang Y, et al. Macro/sub-pulse coded photon counting LiDAR [J]. Opto-Electronic Engineering, 2020, 47(10): 200265. (in Chinese)
    [13] Fouche D G. Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors [J]. Applied Optics, 2003, 42(27): 5388-5398. doi:  10.1364/AO.42.005388
    [14] Gatt P, Johnson S, Nichols T. Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics [J]. Applied Optics, 2009, 48(17): 3261-3276. doi:  10.1364/AO.48.003261
    [15] Chen Z, Liu B, Guo G. Adaptive single photon detection under fluctuating background noise [J]. Optics Express, 2020, 28(20): 30199-30209. doi:  10.1364/OE.404681
    [16] Abbot R I, Shelus P J, Mulholland J D, et al. Laser observations of the Moon: Identification and construction of normal points for 1969-1971 [J]. The Astronomical Journal, 1973, 78: 784. doi:  10.1086/111484
    [17] Wang S, Guo S, Zhang P. Mobile laser ranging cooperative target [C]//SPIE, 2021, 11763: 11763AE.
    [18] Xue L, Li Z, Zhang L, et al. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength [J]. Optics Letters, 2016, 41(16): 3848-3851. doi:  10.1364/OL.41.003848
    [19] Li Z P, Huang X, Cao Y, et al. Single-photon computational 3D imaging at 45 km [J]. Photonics Research, 2020, 8(9): 1532-1540. doi:  10.1364/PRJ.390091
    [20] Li Z P, Ye J T, Huang X, et al. Single-photon imaging over 200 km [J]. Optica, 2021, 8(3): 344-349. doi:  10.1364/OPTICA.408657
    [21] Massa J S, Wallace A M, Buller G S, et al. Laser depth measurement based on time-correlated single-photon counting [J]. Optics Letters, 1997, 22(8): 543-545. doi:  10.1364/OL.22.000543
    [22] Albota M A, Aull B F, Fouche D G, et al. Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays [J]. Lincoln Laboratory Journal, 2002, 13(2): 351-370.
    [23] Schultz K I, Kelly M W, Baker J J, et al. Digital-pixel focal plane array technology [J]. Lincoln Laboratory Journal, 2014, 20(2): 36-51.
    [24] Hadfield R H. Single-photon detectors for optical quantum information applications [J]. Nature Photonics, 2009, 3(12): 696-705. doi:  10.1038/nphoton.2009.230
    [25] Gundacker S, Heering A. The silicon photomultiplier: fundamentals and applications of a modern solid-state photon detector [J]. Physics in Medicine & Biology, 2020, 65(17): 17TR01.
    [26] Yu Y, Wang C, Shi H, et al. A review of quenching circuit design based on Geiger-mode APD [C]//2018 IEEE International Conference on Mechatronics and Automation (ICMA), 2018: 28-33.
    [27] Boisvert J, Sudharsanan R, Yuan P, et al. Development of single photon counting sensors operating at short wavelength infrared wavelengths [J]. Quantum Sensing and Nanophotonic Devices VI, 2009, 7222: 418-425.
    [28] Warburton R E, McCarthy A, Wallace A M, et al. Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength [J]. Optics Letters, 2007, 32(15): 2266-2268. doi:  10.1364/OL.32.002266
    [29] Holzman I, Ivry Y. Superconducting nanowires for single‐photon detection: Progress, challenges, and opportunities [J]. Advanced Quantum Technologies, 2019, 2(3-4): 1800058. doi:  10.1002/qute.201800058
    [30] Korzh B, Zhao Q Y, Allmaras J P, et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector [J]. Nature Photonics, 2020, 14(4): 250-255. doi:  10.1038/s41566-020-0589-x
    [31] You L. Superconducting nanowire single-photon detectors for quantum information [J]. Nanophotonics, 2020, 9(9): 2673-2692. doi:  10.1515/nanoph-2020-0186
    [32] Piemonte C, Gola A. Overview on the main parameters and technology of modern silicon photomultipliers [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 926: 2-15. doi:  10.1016/j.nima.2018.11.119
    [33] Villa F, Severini F, Madonini F, et al. SPADs and SiPMs arrays for long-range high-speed light detection and ranging (LiDAR) [J]. Sensors, 2021, 21(11): 3839. doi:  10.3390/s21113839
    [34] Singh A, Srivastav V, Pal R. HgCdTe avalanche photodiodes: A review [J]. Optics & Laser Technology, 2011, 43(7): 1358-1370.
    [35] Rothman J. Physics and limitations of HgCdTe APDs: A review [J]. Journal of Electronic Materials, 2018, 47(10): 5657-5665. doi:  10.1007/s11664-018-6475-3
    [36] Aull B, Schuette D, Young D, et al. A study of crosstalk in a photon counting imager based on silicon geiger-mode avalanche photodiodes [J]. IEEE Sensors Journal, 2015, 15: 2123-2132. doi:  10.1109/JSEN.2014.2368456
    [37] Marino R M, Davis W R, Rich G C, et al. High-resolution 3D imaging laser radar flight test experiments [C]//Proceedings of SPIE, 2005, 5791: 138-151.
    [38] McGill M, Markus T, Scott V S, et al. The multiple altimeter beam experimental lidar (MABEL): An airborne simulator for the ICESat-2 mission [J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(2): 345-352. doi:  10.1175/JTECH-D-12-00076.1
    [39] Markus T, Neumann T, Martino A, et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation [J]. Remote Sensing of Environment, 2017, 190: 260-273. doi:  10.1016/j.rse.2016.12.029
    [40] Anthony J M, Thomas A N, Nathan T K, et al. ICESat-2 mission overview and early performance [C]//Sensors, Systems, and Next-Generation Satellites XXIII, SPIE, 2019,11151: 111510C.
    [41] Du B, Pang C, Wu D, et al. High-speed photon-counting laser ranging for broad range of distances [J]. Scientific Reports, 2018, 8(1): 4198. doi:  10.1038/s41598-018-22675-1
    [42] Du B, Wang Y, Wu E, et al. Laser communication based on a multi-channel single-photon detector [J]. Optics Communications, 2018, 426: 89-93. doi:  10.1016/j.optcom.2018.05.039
    [43] Shen G Y, Zheng T X, Du B C, et al. Near-range large field-of-view three-dimensional photon-counting imaging with a single-pixel Si-avalanche photodiode [J]. Chinese Physics Letters, 2018, 35(11): 114204. doi:  10.1088/0256-307X/35/11/114204
    [44] Zheng T, Shen G, Li Z, et al. Frequency-multiplexing photon-counting multi-beam LiDAR [J]. Photonics Research, 2019, 7(12): 1381-1385. doi:  10.1364/PRJ.7.001381
    [45] Li Yuqiang, Li Rongwang, Li Zhulian L, et al. Application research on space debris laser ranging [J]. Infrared and Laser Engineering, 2015, 44(11): 3324-3329. (in Chinese)
    [46] Li Yuqiang, Fu Honglin F, Li Rongwang, et al. Research and experiment of lunar laser ranging in Yunnan Observatories [J]. Chinese Journal of Lasers, 2019, 46(1): 0104004. (in Chinese)
    [47] Shi Chenglong, Liu Jiqiao, Bi Decang, et al. Errors analysis of dioxide carbon concentrations measurement by airborne lidar [J]. Infrared and Laser Engineering, 2016, 45(5): 0530001. (in Chinese) doi:  10.3788/irla201645.0530001
    [48] Hu Shanjiang, He Yan, Tao Bangyi, et al. Classification of sea and land waveforms based on deep learning for airborne laser bathymetry [J]. Infrared and Laser Engineering, 2019, 48(11): 1113004. (in Chinese) doi:  10.3788/IRLA201948.1113004
    [49] Zhang Yang, Huang Weidong, Dong Changzhe, et al. Research on the development of the detection satellite technology in oceanographic lidar [J]. Infrared and Laser Engineering, 2020, 49(11): 20201045. (in Chinese) doi:  10.3788/IRLA20201045
    [50] Wang Zijun, Zhang Yang, Liu Dong, et al. Research on the development of detection satellite technology in the novel multi-beam land and ocean lidar [J]. Infrared and Laser Engineering, 2021, 50(7): 20211041. (in Chinese) doi:  10.3788/IRLA20211041
    [51] Zhang Xiaoyu, Wang Fengxiang, Guo Ying, et al. Research on linear array scanning lidar and photon signal processing technology based on InGaAs single-photon detector [DB/OL]. Infrared and Laser Engineering, (2022-09-13) [2022-11-16]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=HWYJ20220830000&uniplatform=NZKPT&v=Npvk7mSHQxcJG_0aXB4tnMxJvGi4UXikjLeVLd72e5WcfsO33hihyoukYFw_Soel.
    [52] Zheng X, Ding Y, Huang G, et al. Study of high speed quenching circuits in photon counting imaging lidar system [C]//AOPC 2015: Optical and Optoelectronic Sensing and Imaging Technology, Proceedings of SPIE, 2015, 9674: 96741N.
    [53] Zhang Hehui, Ding Yuxing, Huang Genghua. Photon counting laser bathymetry system [J]. Infrared and Laser Engineering, 2019, 48(1): 0106002. (in Chinese) doi:  10.3788/IRLA201948.0106002
    [54] Guo Jingjing, Fei Xiaoyan, Ge Peng, et al. High-resolution three-dimensional imaging based on all-fiber photon-counting Lidar system [J]. Infrared and Laser Engineering, 2021, 50(7): 20210162. (in Chinese) doi:  10.3788/IRLA20210162
    [55] Zhu J, Chen Y, Yan Z, et al. Rlationship between the aerosol scattering ratio and temperature of atmosphere and the sensitivity of a Doppler wind lidar with iodine filter [J]. Chinese Optics Letters, 2008, 6(6): 449-453. doi:  10.3788/COL20080606.0449
    [56] Liu L, Zheng J, Ruan Z, et al. Comprehensive radar observations of clouds and precipitation over the Tibetan Plateau and preliminary analysis of cloud properties [J]. Journal of Meteorological Research, 2015, 29(4): 546-561. doi:  10.1007/s13351-015-4208-6
    [57] Yu Y, Liu B, Chen Z. Analyzing the performance of pseudo-random single photon counting ranging lidar [J]. Applied Optics, 2018, 57(27): 7733-7739. doi:  10.1364/AO.57.007733
    [58] Li Z, Liu B, Wang H, et al. Advancement on target ranging and tracking by single-point photon counting lidar [J]. Optics Express, 2022, 30(17): 29907-29922. doi:  10.1364/OE.464070
    [59] Chen Z, Liu B, Guo G, et al. Single photon imaging with multi-scale time resolution [J]. Optics Express, 2022, 30(10): 15895-15904.
    [60] Chen Z, Wang H, Yu Y, et al. Single photon imaging based on a photon driven sparse sampling [J]. Optics Express, 2022, 30(8): 12521-12532.
    [61] Hua K, Liu B, Chen Z, et al. Fast photon-counting imaging with low acquisition time method [J]. IEEE Photonics Journal, 2021, 13(3): 7800312.
    [62] Li Z, Liu B, Wang H, et al. Target tracking and ranging based on single photon detection [J]. Photonics, 2021, 8(7): 278.
    [63] Hua Kangjian, Liu Bo, Fang Liang, et al. Detection efficiency for underwater coaxial photon-counting lidar [J]. Appl Opt, 2020, 59(9): 2797-2809.
    [64] Hua K, Liu B, Chen Z, et al. Efficient and noise robust photon-counting imaging with first signal photon unit method [J]. Photonics, 2021, 8(6): 229. doi:  10.3390/photonics8060229
    [65] Miao Zhenhua, Zhao Baosheng, Zhang Xinghua, et al. A single photon imaging system based on wedge and strip anodes [J]. Chinese Physics Letters, 2008, 25(7): 2698-2701. doi:  10.1088/0256-307X/25/7/101
    [66] Yan Qiurong, Zhao Baosheng, Liu Yongan, et al. Two-dimensional photon counting imaging detector based on a Vernier position sensitive anode readout [J]. Chinese Physics C, 2011, 35(4): 368. doi:  10.1088/1674-1137/35/4/009
    [67] Yan Q R, Wang H, Yuan C L, et al. Large-area single photon compressive imaging based on multiple micro-mirrors combination imaging method [J]. Optics Express, 2018, 26(15): 19080-19090. doi:  10.1364/OE.26.019080
    [68] Luo H, Yuan X, Zeng Y. Range accuracy of photon heterodyne detection with laser pulse based on Geiger-mode APD [J]. Optics Express, 2013, 21(16): 18983-18993. doi:  10.1364/OE.21.018983
    [69] Chen Z, Fan R, Li X, et al. Accuracy improvement of imaging lidar based on time-correlated single-photon counting using three laser beams [J]. Optics Communications, 2018, 429: 175-179. doi:  10.1016/j.optcom.2018.08.017
    [70] Xie J, Zhang Z, Huang M, et al. Spatially modulated scene illumination for intensity-compensated 2D array photon-counting LiDAR imaging [J]. Chinese Physics B, 2022, 31(9): 090701.
    [71] Zhang Y, Li S, Sun J, et al. Three-dimensional single-photon imaging through realistic fog in an outdoor environment during the day [J]. Optics Express, 2022, 30(19): 34497-34509. doi:  10.1364/OE.464297
    [72] Zhao Q Y, Zhu D, Calandri N, et al. Single-photon imager based on a superconducting nanowire delay line [J]. Nature Photonics, 2017, 11(4): 247-251. doi:  10.1038/nphoton.2017.35
    [73] Lan R M, Liu X F, Yao X R, et al. Single-pixel complementary compressive sampling spectrometer [J]. Optics Communications, 2016, 366: 349-353. doi:  10.1016/j.optcom.2016.01.016
    [74] Zhao Yuchen, Tian Hao, Dou Jianhua, et al. Optimal design of superconducting nanowire single-photon detector with high light absorptivity in wavelength range of 3-5 µm based on asymmetric Fabry-Pérot cavity structure [J]. Laser & Optoelectronics Progress, 2022, 59(17): 1704002. (in Chinese)
    [75] Jiang W H, Liu J H, Liu Y, et al. 1.25 GHz sine wave gating InGaAs/InP single-photon detector with a monolithically integrated readout circuit [J]. Optics Letters, 2017, 42(24): 5090-5093. doi:  10.1364/OL.42.005090
    [76] Zhang H, Zhao X, Zhang Y, et al. Review of advances in single-photon LiDAR [J]. Chinese Journal of Lasers, 2022, 49(19): 1910003. (in Chinese) doi:  10.3788/CJL202249.1910003
    [77] Marr J M, Wilkin F P. A better presentation of Planck’s radiation law [J]. American Journal of Physics, 2012, 80(5): 399-405. doi:  10.1119/1.3696974
    [78] Wikipedia. Sunlight [EB/OL]. [2022-11-16]. https://en.wikipedia.org/wiki/Sunlight.
    [79] Degnan J J. Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements [J]. Journal of Geodynamics, 2002, 34(3-4): 503-549. doi:  10.1016/S0264-3707(02)00045-5
    [80] Jerman J H, Clift D J, Mallinson S R. A miniature Fabry-Perot interferometer with a corrugated silicon diaphragm support [C]//IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop, 1990: 140-144.
    [81] Jarkko A, Akseli M, Jussi M, et al. MEMS and piezo actuator-based Fabry-Perot interferometer technologies and applications at VTT [C]//Proceedings of SPIE, 2010, 7680: 76800U.
    [82] Xie X, Dai Y, Ji Y, et al. Broadband photonic radio-frequency channelization based on a 39-GHz optical frequency comb [J]. IEEE Photonics Technology Letters, 2012, 24(8): 661-663. doi:  10.1109/LPT.2012.2185787
    [83] Foley J M, Phillips J D. Normal incidence narrowband transmission filtering capabilities using symmetry-protected modes of a subwavelength, dielectric grating [J]. Optics Letters, 2015, 40(11): 2637-2640. doi:  10.1364/OL.40.002637
    [84] Yin B, Shay T M. Theoretical model for a Faraday anomalous dispersion optical filter [J]. Optics Letters, 1991, 16(20): 1617-1619. doi:  10.1364/OL.16.001617
    [85] Cheng Xuewu, Gong Shunsheng, Li Faquan, et al. Daytime observation technology of lidar by using atomic optical filter [J]. Chinese Journal of Lasers, 2007, 34(3): 406-410. (in Chinese)
    [86] Jacques E L, Juanita R R, Nadya O R, et al. Holographic nonspatial filter [C]//Proceedings of SPIE, 1995, 3532: 481-490.
    [87] Jiang Yun, Liu Bo, Fan Wei. Study on characteristics of volume grating spectral filter [J]. Infrared and Laser Engineering, 2021, 50(12): 20210055. (in Chinese) doi:  10.3788/IRLA20210055
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)  / Tables(3)

Article Metrics

Article views(759) PDF downloads(272) Cited by()

Related
Proportional views

Technical progress and system evaluation of all-time single photon lidar

doi: 10.3788/IRLA20220748
  • 1. Key Laboratory of Science and Technology on Space Optoelectronic Precision Measurement, Chinese Academy of Sciences, Chengdu 610209, China
  • 2. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
  • 3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract: Single photon lidar (also known as photon counting lidar) has detection sensitivity of single photon magnitude. Compared with traditional linear detection lidar, it can obtain longer detection distance, and it has become the frontier and development trend of lidar technology. However, the extremely high detection sensitivity also makes the single photon lidar highly susceptible to the interference of background noise photons in detection, which greatly reduces its performance in daytime and greatly limits its application scope. Based on the detection principle of single photon lidar, this paper briefly reviews its technical development, analyzes the requirements of all-time work for single photon lidar detection system, and a new spectral filtering technique is adopted to greatly improve the detection performance of single photon lidar in daylight. At the same time, this paper also proposed a general evaluation model, which can be very intuitive to evaluate the detection performance of various lidar systems.

    • 激光雷达作为一种高精度、高时间分辨率的主动探测技术,被广泛应用于遥感、空间目标探测、高分辨率三维成像等诸多领域[1-9]。而单光子激光雷达(又称光子计数激光雷达)作为目前较为前沿的激光雷达探测技术,以时间相关单光子计数[10](Time-Correlated Single Photon Counting, TCSPC)与飞行时间法[11](Time of Flight, TOF)结合作为探测机制,采用具有单光子级灵敏度的光电倍增管(PMT)、盖革模式的雪崩光电二极管[4](Gm-APD)、超导纳米线单光子探测器(SNSPD)等作为探测器件,能够对极微弱的回波信号进行探测,从而获得更远的探测距离。

      单光子激光探测与传统的线性探测一样,属于直接脉冲探测体制,都是通过记录发射激光脉冲和回波光子信号事件间的时间差来实现目标距离的测量。不同的是,线性探测要求每个激光脉冲的回波信号功率足够强,能够直接从噪声背景中检出,而单光子探测的回波信号极弱,每个激光脉冲引起的目标回波可以弱到仅为单个光子,甚至不要求对于每个发射脉冲都能接收到回波光子,而是通过多个发射脉冲引起的回波光子事件的累积计数,充分利用回波信号光子到达时间与目标距离信息的相关性,将真实的回波光子计数与噪声光子计数区分开来,从而获取目标信息。单光子探测本质上是一种概率探测,只要在一定时间门内检测到目标回波信号光子的概率高于噪声光子的概率就能够实现探测。因此,单光子探测激光雷达一般采用高重频的脉冲激光器作为光源,以增加单位时间内的概率检测次数(光子累加次数),其优点是能够获取更远的目标距离信息,同时大大降低了对发射脉冲能量、接收光学口径等系统资源的需求。

      然而,单光子探测能够以极高的灵敏度对回波信号进行探测的同时,也极易受到噪声光子的干扰[9]。尤其是单光子探测器都具有一定的死时间效应,即在响应一个光子事件后的一段时间(死时间)内,探测器处于失能状态,不对任何信号响应,这就导致噪声光子(包括背景噪声光子和探测器本身的暗计数)会显著降低系统对真实回波信号光子的探测概率,当噪声计数率达到探测器的饱和计数率(死时间倒数)时,系统检测到的全是噪声计数,完全失去探测能力。尤其是白天工作时,除了信号回波外,目标本身被日光照射而散射的光子,以及探测路径上大气分子和气溶胶粒子对日光的散射光子,都将不可避免地进入系统的接收视场内,成为背景噪声。因此,对于单光子探测激光雷达,白天正常工作是一个巨大的挑战。文中简要回顾了单光子激光雷达,尤其是能够进行白天工作的单光子激光雷达技术发展,然后从其探测原理出发,分析了全天时工作对单光子激光雷达探测系统的需求。同时,采用一种新型的光谱滤波技术搭建了一套单光子探测激光雷达系统,能够极大地提升单光子激光雷达在白天的探测性能。

      另外,为了能够更为直观地对同等系统资源需求下激光雷达的探测性能进行评价,还提出了一种普适性的评价模型,即激光雷达系统的“投资回报率” (Return on Investment, ROI)指数。该指数将激光雷达系统的“投资”参数进行归一化处理,以此来评价一个激光雷达系统探测是否更为“经济”,即投入更少的系统资源能否获取更远的探测距离。

    • 对于激光雷达探测,通用的雷达方程为[12]

      式中:PR为接收回波功率;PT为发射激光功率;Pb为背景辐射和噪声功率;R为目标与雷达之间距离;θT为发射光束发散角;ρ为目标表面对激光的反射率;dA为目标表面面元;Ω为目标光散射立体角;D为接收天线孔径;ηAtm为介质的双程传输效率; ηSys为光学系统总效率。

      由此,对于单光子激光雷达,当目标简化为朗伯体时,单个脉冲的回波光子数Ns为:

      式中:λ为激光波长;ET为发射激光单脉冲能量;AT为目标截面积(对于扩展目标$ A_{T}=1 /\left(4 \pi \theta_{T}^{2} R^{2}\right) $);Ta为雷达到目标之间的单程大气透过率;ϕ为目标平面法线与激光光轴的夹角;h为普朗克常数;c为真空中光速。

      实际探测时,单光子探测器输出脉冲中既包含有信号光子的响应脉冲,也包含有噪声光子的响应脉冲,它们混杂在一起,仅通过单次探测无法区分出信号光子脉冲。考虑到每次信号光子脉冲出现的时刻一致(目标距离不变),而噪声光子脉冲出现的时刻具有随机性,因此TCSPC[10]的统计方法被用于单光子探测中,通过多脉冲累积来提取出淹没在噪声中的回波光子信号。

      多脉冲累积过程实际上相当于相互独立的多次重复试验(伯努利重复试验)。经过M次累积后的探测概率为[13-15]

      式中:$ {k}_{thr} $为鉴别阈值;$ k $ 为索引变量,其变化范围为0~($ {k}_{thr} $−1);PDS为单次探测概率;$ {\eta }_{qe} $为单光子探测器的量子效率;$ {n}_{s} $$ {n}_{n} $ 分别为一个计时单元内的平均信号光子和噪声光子数;$ {P}_{A} $ 为雪崩概率(也称为阻塞系数);td为探测器死时间;ΔT为探测时间门宽度。

      由公式(3)可知,M次累积后的探测概率由以下几方面因素共同决定:鉴别阈值、探测器的量子效率、平均信号光子数和噪声光子数、累积次数以及探测器死时间。系统探测概率既与平均回波光子数有关,又与平均噪声光子数有关,随着平均回波光子数的增加而增加,随着噪声光子数的增加而降低。

    • 1969年,Richard I. Abbot等利用光子计数实现了地球和月球之间的激光测距[16],之后,多个研究机构都开展了相关研究工作。随着单光子探测器件以及激光器技术的不断发展进步,单光子探测激光雷达技术也得到了蓬勃发展,应用领域不断拓展。从合作目标激光测距[17-18]到远距离非合作目标探测[12,19-20],从单点探测到扫描三维成像[2,6,21]以及阵列式三维成像[7,22-23],探测精度和分辨率不断提高,探测距离不断增大。单光子探测器件也从早期的PMT[24-25]发展到GM-APD[26-27]、SNSPD[28-31]、硅光电倍增管(Silicon Photomultiplier, SiPM)也被称为MPPC (Multi-pixel Photon Counter)[32-33],以及最新的HgCdTe APD[34-35],探测性能不断提升。

      2002年,麻省理工学院林肯实验室首先完成了第一代4×4 APD阵列的单光子激光雷达,随后发展成为32×32阵列的光子计数激光雷达[1],目前已经完成领先的256×256阵列的激光雷达[36]。2003年,Richard Heinrichs和R M Marino完成了DARPA资助的Jigsaw计划外场实验,该系统激光波长为532 nm,单脉冲能量为4 μJ,接收光学系统孔径为75 mm,在150 m的距离上实现了空间分辨率为5 cm、距离分辨率为40 cm的光子计数激光三维成像[37]。2012~2013年,美国国家航空航天局(NASA)使用多波束测高试验激光雷达(MABEL)搭载ER-2飞机在20 km高空进行光子计数推扫测量试验,波长为532 nm和1064 nm,单脉冲能量为3~5 μJ,获取了高精度的地表连续高程剖面数据,高精度的云与气溶胶数据以及植被覆盖区域的地物、地表高程模型[38]。2018年,NASA发射了IceSat-2卫星,采用光子计数体制实现的多波束星载激光雷达ATLAS作为其主载荷,同时发射了三对六束激光,波长为532 nm,每对间隔3.3 km,沿轨光斑间隔70 cm,测量地形高度变化小于4 mm,脉冲宽度1 ns,激光重复频率10 kHz,单脉冲能量为25~90 μJ可调[39-40]。同时期,英国赫瑞·瓦特大学在最远至10.5 km的距离上获取了目标的高分辨率三维图像[2]

      国内也有多个研究团队在单光子激光雷达探测方面开展了卓有成效的研究工作。华东师范大学吴光团队一直致力于各种单光子探测技术的发展[41-44];中国科学院云南天文台李语强团队在碎片等空间目标的单光子探测方面工作突出[45-46];中国科学院上海光学精密机械研究所在目标探测、海洋测深等单光子探测应用方面开展了大量工作[47-50];中国科学院上海技术物理研究所对于单光子线阵扫描激光雷达及信号处理做了相关研究[51-54];青岛海洋大学吴松华团队开展了单光子大气探测方面的研究[55-56];中国科学院光电技术研究所笔者团队在单光子编码探测技术以及远距离单光子目标探测等方面进行了应用探索[8,12,15,57-64];中国科学院西安光学精密机械研究所[65-67]、华中科技大学[68]、哈尔滨工业大学[69-71]、南京大学[30,72]、中国科学院国家空间科学中心[73]、西安理工大学[74]等在单光子成像与探测技术方面开展了各有特色的研究工作。中国科技大学潘建伟团队也开展了单光子探测技术的研究[6,19-20,75]:2020年在新疆完成了最远202 km的超远距离单光子三维成像[20],以单像素189 ms的采集的时间,在夜间最终得到了512 pixel×320 pixel分辨率的图像,整个扫描时间约为8.6 h,这是目前公开报道的最远距离的单光子三维成像实验。另外,北京航空航天大学张汉熠等对于单光子激光雷达系统及相关算法等做了较为详细的综述[76]

      随着单光子激光雷达应用领域的不断拓展,全天时工作能力成为必然的需求。基于以上单光子探测原理的分析,系统的探测性能主要取决于背景噪声的抑制能力,具体来说就是降低探测器本身的暗计数以及减少除信号光子外的噪声光子计数。 对于探测器的暗计数,目前几种主流的单光子探测器都能做到比较低的水平,比如GM-APD一般为几十赫兹到千赫兹,SNSPD甚至可以达到几赫兹,相对于白天日光引起的背景噪声计数率(一般为MHz量级)来说已经可以忽略不计。因此,单光子激光雷达白天探测性能的提升主要取决于对日光引起的背景噪声的抑制水平。

      目前,单光子激光雷达一般采用532 nm、1064 nm或1550 nm这三个探测波长,相应的单光子探测器有PMT、Si APD、InGaAs APD、SNSPD几种选择,表1给出了几种探测器的典型参数。

      激光雷达系统常用的背景噪声抑制技术包括空间滤波、时间滤波以及光谱滤波。空间滤波主要是在雷达的光学接收系统中采用有效的视场光阑,尽可能地减小系统的光学视场(FOV),但要注意与发射光束相匹配。时间滤波主要是根据目标大致距离,采用尽可能精确的时间门控,摒弃时间门宽之外的光子信号,而实际上TCSPC本身就是一种十分有效的时间滤波技术。光谱滤波是指以发射激光波长为中心,设置尽可能窄的光谱透过带宽,从而滤除接收视场内除信号波长外的其他波长成分,以此到达抑制背景的目的。

    • 光子计数激光雷达的噪声来源主要是背景光噪声以及探测器本身的暗计数噪声,由于暗计数噪声是由器件本身的暗电流产生的,与器件性能有关,这里不作分析。背景光噪声的主要来源是太阳辐射,因此需要对由太阳辐射引起的、最终到达单光子探测器的噪声光子进行分析。

      为了简化处理,可以将太阳视作一个温度为5778 K的标准黑体,利用黑体辐射公式可以准确得到某一波段太阳光谱的辐射能量。已知标准的普朗克黑体辐射公式为[77]

      式中:h为普朗克常数,$ h=6.626\;196 \times 10^{-34} \mathrm{~J} \cdot \mathrm{s} $c为真空中光速,$c=3 \times 10^{8} \mathrm{~m} / \mathrm{s} $k为玻耳兹曼常数,$ k= 1.380\;622 \times 10^{-23} \mathrm{~J} / \mathrm{K}$T为黑体的温度,在此太阳温度取T=5 778 K,因此,可以得到常用的太阳辐射光谱照度图如图1所示。

      Figure 1.  Irradiance of solar radiation spectrum[78]

      依据黑体辐射公式和太阳辐射光谱,可以得到某一波长的太阳常数,即日地距离上,大气层顶垂直于太阳光线的单位面积在每秒接收到的太阳辐射功率,其随波长不同而变化。在确定激光雷达系统探测波长后,根据系统的光谱滤波带宽以及该波长太阳常数即可计算出该波段范围内的太阳光谱辐射功率。

      激光雷达探测器接收到的目标散射的日光辐射光子数为:

      式中:ηR为雷达接收光学效率;Sλ为雷达波长处的太阳辐射常数;AR为雷达接收光学面积;$\varOmega_{ {FOV}}$为雷达接收光学视场立体角($\varOmega_{{FOV }}=\pi \theta_{R}^{2} / 4$$ \theta_{R} $为接收视场全角);$\psi $为目标平面法线与太阳到目标连线的夹角;Δλ为雷达光谱滤波带宽;$ T_{a}^{\text {sec } \theta_{s}} $表示太阳到目标之间的单程大气透过率。

      式中:$ \theta_{s} $为太阳天顶角;$\; \mu(z) $为高度z处的大气消光系数;H为目标海拔高度。

      除此之外,位于雷达和目标之间路径上的大气也会对太阳辐射进行散射,整个路径上的大气散射被雷达光学系统接收也会成为噪声光子,这部分辐射的计算十分复杂,与太阳高度角、目标方位角、路径大气消光系数分布等探测时的具体太阳与大气参数密切相关,难以精确计算。对于由路径大气散射引起的噪声光子,可由下式进行简化的评估[79]

      对于激光雷达用的单光子探测器的选择,由表1可见,SNSPD探测器在可见到近红外波段的综合探测性能上具有明显优势,制约 SNSPD 的条件主要是其系统需要极低制冷温度(低于 4 K),难以实现系统小型化。另外,目前其使用成本过于昂贵,价格约为半导体探测器的10倍以上。不考虑以上因素时,选用SNSPD 探测器将显著提升雷达探测性能,下文不再将其列入对比分析。此外,对于532 nm探测,由于PMT量子效率高且无死时间效应,在不考虑其他因素的情况下也应优先选用,下文也不再将其列入对比分析。

      Parameter PMTSi APDInGaAs APDSNSPD
      Quantum efficiency@532 nm40%-60%40%-60%-60%-80%
      Quantum efficiency@1064 nm-2%-3%10%-15%60%-90%
      Quantum efficiency@1550 nm--20%-25%60%-90%
      Dark count/s−150-600100-1000800-500010-50
      Dead time/ns-25-50200-1000010-30

      Table 1.  Typical parameters of single-photon detectors (Based on mainstream commercial detector parameters, source vendors include Hamamatsu, Excelitas, PicoQuant, Laser Components, ID Quantique, Aurea, Scontel, Becker & Hickl, etc.)

      为了进行探测性能对比分析,选定10 km距离的扩展目标,按照表2中参数计算不同光谱滤波带宽时不同波长和探测器的探测概率。

      Wavelength & Detector532 nm
      Si APD
      1064 nm Si APD1064 nm InGaAs APD1550 nm InGaAs APD
      Receiving aperture/mm100
      Transmitting efficiency0.8
      Pulse energy/μJ10
      Receiving efficiency0.6
      Receiving FOV/mrad1
      Time bin width/ns1
      Target reflectivity0.3
      Atmospheric visibility/km12
      Target distance/km10
      Solar zenith angle/(°)30
      Detector quantum efficiency60%3%15%25%
      Detector dark count/s−12002002 0002 000
      Detector dead time/ns4040200200
      Solar constant/W·m2·μm–11880642642274

      Table 2.  Lidar parameters for comparative analysis

      计算中大气辐射采用LOWTRAN软件,夏季中纬度地区标准大气模式,光谱滤波带宽分别选择0.5、1、1.5、2 nm,结果如图2所示。图2(a)为单次探测概率,图2(b)为脉冲累积100次、鉴别阈值为10时的探测概率,图2(a)中还给出了12 km能见度时,10 km距离不同波长的双程大气透过率。由图可见,无论对于哪种波长,光谱滤波带宽都极为重要,带宽2 nm以上白天探测概率急剧下降。虽然532 nm的探测器效率很高,但由于大气衰减以及日光背景较强的影响,其探测性能并不好。而InGaAs探测器由于其死时间过长,导致在强噪声环境下探测性能不佳,因此,虽然1550 nm波长的大气衰减最弱,日光背景最低,但其探测性能仍然不佳。综合来看,白天探测时采用1064 nm波长,Si APD探测器的性能最好,同时光谱滤波带宽需小于2 nm。

      Figure 2.  Detection probability of different wavelengths and detectors under different spectral filtering bandwidths of 10 km target

      图3(a)所示为1 nm滤波带宽,1064 nm波长不同探测距离时,单次探测接收到的目标激光回波光子数(红色)、目标散射日光噪声光子数(蓝色)和路径大气散射日光噪声光子数(绿色)。图3(b)所示为几种波长和探测器在不同探测距离上的单次探测概率,红色点线为1064 nm、Si APD探测器在夜晚无日光背景下的探测概率。由图可见,白天受到日光背景噪声的影响,目标的探测概率并不是随距离增大直接降低的,对于扩展目标,在近距离上目标散射的日光噪声为主要影响,甚至会一定程度上导致距离越近,目标探测概率越低,该影响会随距离的增加而降低,而路径大气散射的日光噪声会随距离的增加而增加,并逐渐成为主要噪声源。

      Figure 3.  Noise signal and detection probability of single detection at different distances with 1 nm filtering bandwidth

      图4为夜间无日光背景影响时,不同波长和探测器在对不同距离目标的探测概率。由图可见,在无日光背景噪声影响时,探测距离主要受到传输路径大气衰减的影响,1550 nm波长由于大气衰减最弱,可以达到最远的探测距离,1064 nm波长采用InGaAs探测器时量子效率相对Si APD探测器较高,所以探测距离较远。

      Figure 4.  Detection probability of different wavelengths and detectors at different distances at night

    • 经过上节的计算分析不难看出,背景光噪声抑制技术是提升激光雷达全天时工作能力的关键。目前激光雷达系统中采用的光谱滤波技术主要包括窄带干涉滤光片、法布里-珀罗(F-P)标准具[80-82]、光栅滤波器件[83]、原子滤光器等[84-85]方法。为了达到更好的背景抑制效果,光谱滤波器件的滤波带宽越窄越好,带外的抑制能力越高越好,同时为了不影响信号光的接收,其中心波长的透过率越高越好。窄带干涉滤光片是目前激光雷达中应用最为广泛的光谱滤波器件,多数窄带干涉滤光片的滤波带宽为0.5~10 nm,透过率为70%~90%,带宽更窄的干涉滤光片制备困难,且透过率会急剧下降;F-P标准具虽然能够达到几十皮米量级的滤波带宽,但是由于其工作原理的限制,导致其对于温度变化和外界震动异常敏感,需要复杂精密的控制,并且其自由光谱范围较小,须与干涉滤光片结合使用,这些都限制了F-P标准具的实际应用;光栅滤波器件在衍射效率及滤波带宽上存在矛盾,且其带外抑制能力不足。原子滤光器一般只能针对特定波长的入射光产生共振从而透过,同时需要外加温度控制以及磁场,使用时有诸多不便。

      为了实现更好的光谱滤波,笔者采用反射式布拉格光栅作为核心滤波器件[86-87],搭建了一个超窄带光谱滤波系统(Ultra-narrowband Spectral Filtering System,UNSFS) ,该系统滤波带宽约为50 pm,透过率约为85%,中心波长为1029 nm。同时,采用波长为1029 nm的Yb:YAG窄线宽脉冲激光器作为激光雷达光源。1029 nm与1064 nm同处于1 μm波段,大气衰减和日光背景辐射水平相当,但对于硅基单光子探测器,在1029 nm处的量子效率约为1064 nm处的三倍(8%)。UNSFS与激光器的光谱匹配关系如图5所示。

      Figure 5.  Spectral matching relationship between UNSFS and laser

      图5中,蓝线为滤波器的透过率曲线,FWHM 约为50 pm,中心透过率超过85%,中心波长为1029.07 nm;红线为激光器的光谱功率,其FWHM约为25 pm,两者可以有效配合。

      基于该UNSFS搭建了一个单光子激光雷达,系统结构如图6所示。激光重复频率为1.6 kHz,单脉冲能量为20 μJ,脉冲宽度为2 ns,发射束直径为1 mm,发散角为1.08 mrad,光学接收径为25 mm,接收视场为1.3 mrad。透镜收集的光线通过针孔后进入UNSFS,滤波后透射光线耦合到芯径为100 μm的多模光纤中,然后进入单光子探测器。激光的发射和接收光束由带有中心孔的反射镜进行空间合束,在中心孔旁边放置PIN探测器作为发射脉冲同步信号源。

      Figure 6.  Single photon lidar system structure

      完成雷达系统搭建后,首先进行了单点测距实验,实验目标选择为实验室所能观测到最远的目标——成都市东侧的龙泉山脉,从地图上得知该山脉距离实验地点的直线距离约为25 km。实验时天气晴朗,能见度约22 km。从上午10点到晚上10点,每小时进行一次探测,检测积累时间为1 s (1600次),时间门宽度为16 ns,结果如图7所示。

      Figure 7.  (a) Lidar echo photon counting distance histogram; (b) Background noise count rate

      图7 (a)为激光雷达回波光子计数距离直方图,图7(b)为每次探测的背景噪声计数率(Background Noise Count Rate, BNCR)统计。由图可见,目标实测距离为24.35 km,目标回波信号累积光子计数为16,此时背景光条件下的平均噪声计数(Average Noise Count, ANC)为3.06,噪声计数标准差为0.54。

      BNCR由下式给出:

      式中:PRF为激光器的重复频率;T为探测累计时间。可以看到,在强烈背景光条件下,激光雷达系统也拥有非常高的信噪比,该系统在全天最大的背景噪声计数率仅为119 kHz,远低于其他的光子计数激光雷达系统(一般为几MHz量级或者更多[42,64])。该实验能够证明采用新型UNSFS激光雷达系统拥有良好的日间工作能力。

      在完成了远距离测距实验后,利用一个可二维角度调节的反射镜完成了对城市区域的快速扫描三维成像实验,系统实物如图8所示。

      Figure 8.  Picture of single photon lidar and scanning system

      扫描的目标选择了成都市的地标建筑——成都金融城双子塔,该建筑有着较为明显的几何特征。实验时间选择在下午4点阳光强烈的时刻,当天能见度约为10 km,整个扫描视场为1°×1°,扫描的图像分辨率为100×141。得益于该系统优异的背景噪声抑制能力,使得整个探测扫描的时间大为缩短,这对于远距离三维成像来说至关重要。整个扫描时间为85 s,单点累加时间约为6 ms。扫描结果如图9所示。

      Figure 9.  Experimental results of fast scanning 3D imaging

      图9(a)为在实验室由光学相机拍摄到的目标照片,红色线框为激光雷达扫描区域;图9(b)为扫描全景三维点云图像;图9(c)为单个像素在6 ms累加时间下的光子计数直方图;图9(d)为7.1~7.7 km远景三维点云图;图9(e)为3.5~4.2 km近景三维点云图;图9(f)和图9(g)分别为近景和远景区域顶视图。从结果中可以看出,整个点云图分布在3.5~7.7 km范围,能够非常精细地展示出双子塔的表面轮廓(细节处有穿透成像),同时前方建筑群的细节也能够得到有效的展现,证明了该系统能够出色完成日间强烈背景光条件下的快速三维成像。

    • 在完成了激光雷达的系统搭建和测试实验后,考虑对其探测性能进行评估。人们一般习惯用最大探测距离来评价,然而对于激光雷达系统来说,简单地增加接收光学孔径和发射激光功率总是可以获得更远的探测距离,但这不可避免地会带来对系统资源的更多需求,给雷达的实际应用带来困难。这里引入经济学的概念,体积、质量、功耗等系统资源对于一台激光雷达来说可以认为是各种“投资”,而“回报”就是最大探测距离。在经济学上,人们追求更高的投资回报率(Return on Investment,ROI),对于激光雷达系统同样也应如此。为此,文中提出了一种激光雷达性能评估模型,该模型将激光雷达系统的“投资”参数进行归一化,以此来评价一个激光雷达系统是否更经济,即投入更少的系统资源能否获取更远的探测距离。

      对于一个激光雷达系统而言,其光学接收面积和激光发射功率无疑都属于“投资”,而且探测时间也是应考虑的一种时间“投资”。对于激光雷达探测的“回报”,通常习惯以最大探测距离作为评价,并且考虑到距离项在激光雷达方程中是以平方形式给出的,因此,将最大探测距离的平方作为激光雷达系统的“回报”。除了上述参数外,激光雷达的最大探测距离还与传输路径的衰减和目标的有效散射截面有关,但它们都属于外部影响因素,而这里只对激光雷达系统本身进行评估,在此评估模型中不对它们进行考虑。

      由此,可以通过在单位接收面积、单位发射功率和单位探测时间情况下系统的最大探测距离平方来得到激光雷达的ROI指数,以如下形式给出:

      式中:Z为激光雷达的最大探测距离。鉴于激光雷达系统中激光器对资源的消耗最终是以平均功率来衡量的,因此P应为激光发射的平均功率。对于脉冲激光器,有:

      对于光子计数激光雷达,每个像素的脉冲累积次数N=T×PRF;而对于线性探测激光雷达,其单像素探测时间T=1/PRF,脉冲累积次数N=1

      这样,ROI指数可以写为:

      式中所有物理量单位都采用国际标准单位,ROI指数的单位为J−1,可以认为是激光雷达系统的“投资回报率”。显然,ROI指数越高,激光雷达的探测效率就越高,或者说激光雷达探测更为“经济”。

      需要指出的是,对于N×M面阵探测激光雷达,其单像素探测时间为T/(N×M),而T是其单帧的探测时间。可见,对于面阵探测激光雷达,通过一次探测即可同时获得N×M个像素点的距离值,从而缩短了探测时间。然而,为了保证N×M个像素的同时探测,它必将以更高的发射总功率或更大的接收面积为代价。同样,对于单点激光雷达,它减少了对发射功率或接收面积的需求,但同时付出的是需要扫描N×M个点才能完成三维成像的时间代价。

      另外,线性探测激光雷达可以用一个脉冲即完成测量,而光子计数激光雷达要积累一定数量的脉冲才能识别目标获得测量值,这也可以看作是对探测时间上不同的“投资”。

      为了展示ROI指数的评估效果,这里除了上文提出的新型单光子激光雷达外,还选择了四个具有代表性的光子计数激光雷达系统作为参考进行评估。表3中,系统1是英国赫瑞·瓦特大学的远距离单光子扫描成像系统[2],能够在800 m~10.5 km (夜间工作)的范围内获取3D图像。系统2是NASA ATLAS系统,部署在ICESat-2卫星上,轨道高度500 km,用于对地观测[41],它可以昼夜工作。系统3是中国科学技术大学的单光子3D成像激光雷达系统,该系统在夜间获得了202 km距离的扫描3D成像[72],并在21.6 km处进行了白天3D成像实验(系统4)。系统5是上文提出的新型单光子激光雷达系统。

      需要指出的是,对于上文提出的新型单光子激光雷达系统,在以上评估中使用的探测距离值仅仅是一个实际探测实验中的距离值,而远远不是该激光雷达的最大可探测距离。此外,表3中使用的数据都来自公开发表的文献,并不代表这些激光雷达系统的实际最大可探测距离。因此,表3中计算的ROI指数仅供参考,并不表示这些系统所能达到的实际指数。

      SystemInstitute
      Receiving aperture/mPulse energy/JSingle pixel detection time/sDistance/kmROI index
      1HWU (Night)0.218×10−100.310.51.06×1014
      2NASA (Day)0.84.8×10−51×10−45001.18×1014
      3CSTU (Night)0.2791×10−40.192015.89×1012
      4CSTU (Day)0.2791.2×10−62.2×10−221.62.9×1012
      5IOE (Day)0.0252×10−56×10−37.76.03×1014

      Table 3.  Comparison of ROI index of different lidar systems

      另外,对于三维成像激光雷达,利用基于目标空间关联性的各种算法可以有效减少单像素的累积时间,从而提高系统的ROI指数。对于图9中的3D成像,由于每个单像素的探测信噪比已经足够好,没有应用任何其他关联算法。

    • 文中从单光子激光雷达的探测原理出发,分析了全天时工作对单光子激光雷达探测系统的需求,尤其是白天探测时所面临的背景噪声水平,对比了几种采用主流探测波长和探测器时激光雷达的探测性能。条件允许时,超导纳米线单光子探测器会有较大优势,除此之外,综合考虑目前的器件水平以及日光辐射、大气散射等影响,采用1 μm波段作为探测波长和硅基的单光子探测器,会带来更好的全天时探测性能。

      在此基础上,文中采用反射式布拉格光栅作为核心滤波器件,研制了一个超窄带激光雷达光谱滤波系统(50 pm带宽),配合使用窄线宽1029 nm脉冲激光器(25 pm线宽)作为光源,搭建了一套新型的全天时单光子激光雷达系统。利用该激光雷达在城市复杂大气环境中完成了24.35 km的测距与全天时噪声水平的测试实验。随后完成了3.2~7.7 km的高动态快速三维扫描成像实验。实验结果表明,该系统能够在强烈背景光条件下出色地完成探测任务,能够极大地提升单光子激光雷达的全天时探测能力,为白天工作的激光雷达提供了一种全新的实用解决方案。

      此外,为了对实际激光雷达系统的性能进行评价,类比经济学中的“投资回报率”概念,提出了一种激光雷达评价模型,即ROI指数,该指数能够十分直观地对各种激光雷达系统探测性能进行评价,可作为一种通用的激光雷达性能评价标准。所提出的新型单光子激光雷达的ROI指数为6.03×1014,是一个相当高的分数。

Reference (87)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return