Volume 52 Issue 3
Mar.  2023
Turn off MathJax
Article Contents

Dong Yakui, Liu Junliang, Sun Linshan, Li Yongfu, Fan Shuzhen, Gao Liang, Liu Zhaojun, Zhao Xian. Integrated low-noise near-infrared single-photon detector based on InGaAs NFAD (invited)[J]. Infrared and Laser Engineering, 2023, 52(3): 20220907. doi: 10.3788/IRLA20220907
Citation: Dong Yakui, Liu Junliang, Sun Linshan, Li Yongfu, Fan Shuzhen, Gao Liang, Liu Zhaojun, Zhao Xian. Integrated low-noise near-infrared single-photon detector based on InGaAs NFAD (invited)[J]. Infrared and Laser Engineering, 2023, 52(3): 20220907. doi: 10.3788/IRLA20220907

Integrated low-noise near-infrared single-photon detector based on InGaAs NFAD (invited)

doi: 10.3788/IRLA20220907
Funds:  Natural Science Foundation of Shandong Province (ZR2022 MF323); Natural Science Foundation of Shandong Province (ZR2022 LLZ002); China Postdoctoral Science Foundation (2022 M711896); Shandong University Equipment Development Cultivation Project (zy202004)
  • Received Date: 2023-01-20
  • Rev Recd Date: 2023-02-10
  • Publish Date: 2023-03-25
  •   Objective  Single-photon detection technology has attracted attention of researchers increasingly in recent years. The development of negative feedback avalanche diode (NFAD) which integrates a quenching resistor for fast quenching has greatly lessened the afterpulsing effects in InGaAs/InP based near-infrared single-photon detectors. Moreover, the integration of the thermal-electric cooler (TEC) with the NFAD has made the detector small in size and low in power consumption. However, the integration of the quenching resistor with large resistance reduces the amplitude of the avalanche current output to tens of μA. Though it can be read out using a broadband pre-amplifier, the long bonding wire of the TEC-integrated NFAD makes it prone to electro-magnetic interference. In addition, the large parasitic inductance and capacitance of the long bonding wire, combined with the low amplitude of the avalanche signal, makes it hard to cancel the noise induced by the capacitive response of the recovery signal of the NFAD, and hence it is difficult to use active-quenching circuits for better performance. Therefore, it is required to design a sophisticated circuit to solve the problems above to facilitate the application of the NFAD-based single-photon detector.   Methods  An integrated free-running InGaAs near-infrared single-photon detector was developed based on negative feedback avalanche diode (NFAD). In order to tackle with the problem that the readout of the avalanche current is prone to interference when using an amplifier, a high-impedance differential circuit without pre-amplifier was proposed for avalanche signal extraction. By introducing a specially designed resistive-capacitive network and signaling, the active-quenching technique was successfully combined with NFAD and was able to work stably. In addition, shielding material was applied to the amplifier-free readout circuitry for further interference shielding. The design above enhanced the quenching performance and stability of the detector at the same time. Moreover, in order to lower the dark-count rate, the circuit and the heat-dissipation structure of the detector was optimized to maximize the thermal contact area, and hence the high heat from the integrated thermal-electric cooler of the NFAD and the high-speed quenching circuit can be quickly dissipated to achieve lower cooling temperature.   Results and Discussions   The performance of the quenching circuit, the thermal design, and the anti-interference were verified through experiments. Waveforms at the inputs of the comparator (in Fig. 3) showed that the performance of the detector without pre-amplifier was stable. The maximum detection efficiency for 1550 nm wavelength reached 33%, and the minimum dead time available was 120 ns at the detection efficiency of 10%, at −50 ℃, where the dark-count rate and afterpulse probability were as low as 890 Hz and 10.6%, respectively. The heat-dissipation performance was good enough to maintain the temperature of the NFAD at −58 ℃ with fan cooling when the ambient temperature was 20 ℃. At −30 ℃, the afterpulse probability was approximately 70% of the value at −58 ℃, at the cost of a higher dark count rate of 13.2 times of the value at −58 ℃.   Conclusions  The proposed amplifier-free avalanche extraction and active-quenching circuit was able to work with the NFAD stably with a threshold of 9 mV, showing an excellent anti-interference performance. The afterpulse probability was as low as 10.6% at 10% detection efficiency, 120 ns dead time, −50 ℃, indicating that the hybrid quenching performance of the active-quenching circuit with NFAD was sufficient for low-dead-time free-running operation of the detector. In addition, good heat-dissipation performance was achieved by the large-thermal-contact-area design, where the temperature of the NFAD reached −58 ℃ with fan cooling at an ambient temperature of 20 ℃. It is indicated that this highly integrated low-noise near-infrared single-photon detector for communication wavelengths is especially suitable for use in the applications where high performance and minimum space usage are required.
  • [1] Wu Miao, Lu Yu, Mao Tianyi, et al. Time-correlated multi-depth estimation of Single-photon lidar [J]. Infrared and Laser Engineering, 2022, 51(2): 20210885. (in Chinese) doi:  10.3788/IRLA20210885
    [2] Yu Chao, Qiu Jiawei, Xia Haiyun, et al. Compact and lightweight 1.5 μm lidar with a multi-mode fiber coupling free-running InGaAs/InP single-photon detector [J]. Review of Scientific Instruments, 2018, 89(10): 103106. doi:  10.1063/1.5047472
    [3] Liu Junliang, Xu Yining, Dong Yakui , et al. Integrated InGaAsP near-infrared single-photon detector with fast active quenching [J]. Chinese Journal of Lasers, 2021, 48(12): 1212002. (in Chinese) doi:  10.3788/CJL202148.1212002
    [4] Shi Yanli, Zhu Hongxia, Yang Xueyan, et al. InP-based free running mode single photon avalanche photodiode [J]. Infrared and Laser Engineering, 2020, 49(1): 0103005. (in Chinese)
    [5] Liu Chen, Ye Haifeng, Shi Yanli. Advances in near-infrared avalanche diode single-photon detectors [J]. Chip, 2022, 1(1): 100005.
    [6] Jensen K E, Hopman P I, Duerr E K, et al. Afterpulsing in Geiger-mode avalanche photodiodes for 1.06 μm wavelength [J]. Applied Physics Letters, 2006, 88(13): 133503. doi:  10.1063/1.2189187
    [7] Fabio Acerbi, Adriano Della Frera, Alberto Tosi, et al. Fast active quenching circuit for reducing avalanche charge and afterpulsing in InGaAs/InP single-photon avalanche diode [J]. IEEE Journal of Quantum Electronics, 2013, 49(7): 563-569. doi:  10.1109/JQE.2013.2260726
    [8] Wang Shuai, Han Qin, Ye Han, et al. Temperature dependency of InGaAs/InP single photon avalanche diode for 1 550 nm photons [J]. Infrared and Laser Engineering, 2021, 50(11): 20210453. (in Chinese) doi:  10.3788/IRLA20210453
    [9] Hu Chong, Zheng Xiaoguang, Campbell J C, et al. Characterization of an InGaAs/InP-based single-photon avalanche diode with gated-passive quenching with active reset circuit [J]. Journal of Modern Optics, 2011, 58(3-4): 201-209. doi:  10.1080/09500340.2010.515749
    [10] Jiang Xudong, Itzler M A, Kevin O’Donnell, et al. Shortwave infrared negative feedback avalanche diodes and solid-state photomultipliers [J]. Optical Engineering, 2014, 53(8): 081908. doi:  10.1117/1.OE.53.8.081908
    [11] Mirko Sanzaro, Niccolò Calandri, Alessandro Ruggeri, et al. InGaAs/InP SPAD with monolithically integrated zinc-diffused resistor [J]. IEEE Journal of Quantum Electronics, 2016, 52(7): 4500207.
    [12] Korzh B, Walenta N, Lunghi T, et al. Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency [J]. Applied Physics Letters, 2014, 104(8): 081108. doi:  10.1063/1.4866582
    [13] Liu Junliang, Xu Yining, Li Yongfu, et al. Exploiting the single-photon detection performance of InGaAs negative-feedback avalanche diode with fast active quenching [J]. Optics Express, 2021, 29(7): 10150-10161. doi:  10.1364/OE.420368
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(200) PDF downloads(120) Cited by()

Related
Proportional views

Integrated low-noise near-infrared single-photon detector based on InGaAs NFAD (invited)

doi: 10.3788/IRLA20220907
  • 1. Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Qingdao 266237, China
  • 2. Center for Optics Research and Engineering (CORE), Shandong University, Qingdao 266237, China
  • 3. School of Information Science and Engineering, Shandong University, Qingdao 266237, China
Fund Project:  Natural Science Foundation of Shandong Province (ZR2022 MF323); Natural Science Foundation of Shandong Province (ZR2022 LLZ002); China Postdoctoral Science Foundation (2022 M711896); Shandong University Equipment Development Cultivation Project (zy202004)

Abstract:   Objective  Single-photon detection technology has attracted attention of researchers increasingly in recent years. The development of negative feedback avalanche diode (NFAD) which integrates a quenching resistor for fast quenching has greatly lessened the afterpulsing effects in InGaAs/InP based near-infrared single-photon detectors. Moreover, the integration of the thermal-electric cooler (TEC) with the NFAD has made the detector small in size and low in power consumption. However, the integration of the quenching resistor with large resistance reduces the amplitude of the avalanche current output to tens of μA. Though it can be read out using a broadband pre-amplifier, the long bonding wire of the TEC-integrated NFAD makes it prone to electro-magnetic interference. In addition, the large parasitic inductance and capacitance of the long bonding wire, combined with the low amplitude of the avalanche signal, makes it hard to cancel the noise induced by the capacitive response of the recovery signal of the NFAD, and hence it is difficult to use active-quenching circuits for better performance. Therefore, it is required to design a sophisticated circuit to solve the problems above to facilitate the application of the NFAD-based single-photon detector.   Methods  An integrated free-running InGaAs near-infrared single-photon detector was developed based on negative feedback avalanche diode (NFAD). In order to tackle with the problem that the readout of the avalanche current is prone to interference when using an amplifier, a high-impedance differential circuit without pre-amplifier was proposed for avalanche signal extraction. By introducing a specially designed resistive-capacitive network and signaling, the active-quenching technique was successfully combined with NFAD and was able to work stably. In addition, shielding material was applied to the amplifier-free readout circuitry for further interference shielding. The design above enhanced the quenching performance and stability of the detector at the same time. Moreover, in order to lower the dark-count rate, the circuit and the heat-dissipation structure of the detector was optimized to maximize the thermal contact area, and hence the high heat from the integrated thermal-electric cooler of the NFAD and the high-speed quenching circuit can be quickly dissipated to achieve lower cooling temperature.   Results and Discussions   The performance of the quenching circuit, the thermal design, and the anti-interference were verified through experiments. Waveforms at the inputs of the comparator (in Fig. 3) showed that the performance of the detector without pre-amplifier was stable. The maximum detection efficiency for 1550 nm wavelength reached 33%, and the minimum dead time available was 120 ns at the detection efficiency of 10%, at −50 ℃, where the dark-count rate and afterpulse probability were as low as 890 Hz and 10.6%, respectively. The heat-dissipation performance was good enough to maintain the temperature of the NFAD at −58 ℃ with fan cooling when the ambient temperature was 20 ℃. At −30 ℃, the afterpulse probability was approximately 70% of the value at −58 ℃, at the cost of a higher dark count rate of 13.2 times of the value at −58 ℃.   Conclusions  The proposed amplifier-free avalanche extraction and active-quenching circuit was able to work with the NFAD stably with a threshold of 9 mV, showing an excellent anti-interference performance. The afterpulse probability was as low as 10.6% at 10% detection efficiency, 120 ns dead time, −50 ℃, indicating that the hybrid quenching performance of the active-quenching circuit with NFAD was sufficient for low-dead-time free-running operation of the detector. In addition, good heat-dissipation performance was achieved by the large-thermal-contact-area design, where the temperature of the NFAD reached −58 ℃ with fan cooling at an ambient temperature of 20 ℃. It is indicated that this highly integrated low-noise near-infrared single-photon detector for communication wavelengths is especially suitable for use in the applications where high performance and minimum space usage are required.

    • 近年来,基于InGaAs单光子雪崩二极管(Single-Photon Avalanche Diode,SPAD)的近红外单光子探测技术在远距离激光雷达等系统中的应用日益广泛[1-2],展现了其低功耗、小体积等优势[3]。然而,其暗计数较Si基探测器高,且在一次探测事件后出现后脉冲噪声计数的概率较大,因此较高的噪声计数是该类器件实际应用中不可忽视的问题[4-5]

      由于后脉冲发生概率与雪崩载流子总量成正比[6],降低后脉冲的一个重要方法是加快雪崩的淬灭速度[7]以降低雪崩幅度和时长。另一方面,暗计数率可通过对探测芯片进行制冷而降低[8],若为避免主动淬灭电路发热对制冷温度的影响而增大电路与器件的距离,则会增大淬灭延迟,加剧后脉冲效应[9]。采用大电阻的被动淬灭电路虽没有发热问题,但需要尽可能减小其与探测芯片的距离和寄生参数才能获得较快的淬灭速度。美国Princeton Lightwave公司[10]和米兰理工大学[11]分别采用了不同的方法将大阻值的淬灭电阻直接集成在SPAD上,研发了负反馈雪崩二极管(Negative Feedback Avalanche Diode, NFAD),在不影响制冷温度的前提下,最大程度降低了寄生参数和淬灭延迟。

      研究人员基于NFAD器件研制了多种性能优异的单光子探测器。日内瓦大学使用斯特林制冷机将NFAD制冷到−110 ℃,在10%探测效率时将暗计数降至了1,后脉冲概率仅2.2%,但死时间长达20 μs,且制冷机体积和功耗较大[12]。中国科学技术大学采用NFAD研制了自由运转单光子探测器,在死时间0.6 μs、10%探测效率时后脉冲概率为10%,并将其用于激光雷达系统[2]。山东大学研制了一种利用全差分放大结构的混合淬灭电路驱动NFAD探测器,在−50 ℃、死时间200 ns、探测效率10%时,暗计数率小于918 Hz,后脉冲概率仅11%,表现出了较低的噪声计数[13]

      然而,NFAD的主要缺点也来源于这一内置的大阻值淬灭电阻。首先,淬灭后NFAD需要通过该电阻向SPAD结电容充电,通常需要数十至上百ns,远大于常规SPAD。其次,这一电阻使得大多数雪崩电流均“内耗”,仅有数十μA的电流输出[10-11],因此各研究机构均使用了前置放大电路[10-13],将信号放大到至少数十mV后再进行鉴别。

      为了进一步降低探测器体积和功耗,集成多级热电致冷器(Thermal-Electric Cooler, TEC)的SPAD受到了更多关注[3]。然而,集成多级TEC的NFAD器件则由于探测芯片与管脚距离较远,到读出电路的引线长,例如在使用3级TEC时引线长约8 mm。长引线引发了如下两个特有的问题:首先,较长的非阻抗匹配引线可等效为天线,按直立全向天线估算,8 mm引线的天线增益为1 mm引线的8倍,加之NFAD的雪崩信号自身比常规的SPAD小数十倍[10-11]且不能采用滤波技术,使得带制冷的NFAD极易受干扰。其次,该内置TEC的器件较长的引线使器件分布参数相对较大,若结合主动淬灭电路或门控电路使用[13]将极大地增加了尖峰噪声消除电路的设计和调试难度,且残余的尖峰噪声也会被放大,易导致放大器饱和甚至过载。

      因此,文中针对1550 nm激光雷达对单光子探测器高集成度、低噪声的应用需求,设计了一种基于InGaAs NFAD的单光子探测器,包括专用于NFAD的低功耗的无前置放大器高速混合淬灭电路,以及高速计时、计数读出电子学,并着重考虑了散热和抗干扰设计。该模块可工作在自由运转模式和宽门控模式,尤其适用于激光雷达应用。

    • 设计采用了北京润铭宇的PNA-308-MM型NFAD,有效光敏面直径为22 μm,耦合了62.5/125 μm多模尾纤,内置三级TEC热电制冷器,采用六管脚的TO-8管壳封装。

      为解决集成TEC制冷的探测器件较长的引线导致的易受外界干扰和尖峰噪声难以消除的问题,课题组提出了针对NFAD的无前置放大器高速主动淬灭电路,如图1所示。

      Figure 1.  Schematics of preamplifier-free high-speed hybrid quenching circuit

      设计以带锁存功能的SiGe异质结双极型晶体管(Heterojunction Bipolar Transistor, HBT)工艺的超高速比较器为核心构成主动淬灭电路,结合外部晶体管和C-RC电容平衡消噪电路实现雪崩信号的提取、NFAD淬灭及淬灭状态保持,如图1中深红色部分所示。以现场可编程门阵列(Field-Programmable Gate Array, FPGA)为核心,结合运算放大器等部分外围电路实现NFAD淬灭后恢复控制,偏压、鉴别电平、死时间等参数的调整,以及雪崩信号的计时、计数和输出功能,如图1中深蓝色部分所示。

      主动淬灭电路的具体工作原理如下:NFAD阳极侧集成淬灭电阻后通过耦合电容CC连接至比较器同相输入端。与通常使用该类比较器时采用50 Ω端接电阻的方法不同,设计使用了高达2.4 kΩ的电阻RP作为电流提取电阻,这一变更使得NFAD的输出在过偏压1.5 V时即可达到约20 mV,可直接被比较器鉴别。NFAD的阴极通过由CD1、RD1和CD2构成的C-RC平衡消噪网络连接至比较器反相端,用于NFAD恢复时电压突变导致的尖峰噪声的消除。同时,反相端通过RN连接至可变的鉴别电平。当雪崩信号被鉴别到时,比较器同相输出端反转驱动淬灭晶体管(GaAs增强型赝配高电子迁移率晶体管,GaAs Enhancement-mode Pseudomorphic High-Electron-Mobility Transistor, GaAs E-pHEMT)输出翻转,降低阴极电压,NFAD雪崩淬灭;同时,比较器反相输出端反转,并通过锁存使能反相输入端(LE-)锁存该淬灭状态。雪崩淬灭后,受FPGA控制的高速运算放大器切断淬灭晶体管偏置,以实现最低的功耗;同时通过LE+端解除比较器锁存状态,恢复其比较功能。设定的死时间过后,或门控“开”信号到达时,FPGA控制高速运算放大器恢复淬灭晶体管偏置,NFAD恢复工作。

      恢复和淬灭瞬间NFAD阴极上的电压瞬变均会通过NFAD的结电容和寄生电容耦合至输出端。然而,NFAD所需的阻值更大的提取电阻RP使该尖峰噪声信号幅度增大了数十倍,并展宽至数十ns,常规的电容平衡消噪电路不足以将噪声抑制在鉴别电平以下。因此,在C-RC平衡消噪电路的基础上,在NFAD恢复信号发出前5 ns时由FPGA驱动鉴别电平控制电路提高比较器反相端(In-)的电平约200 mV,但在NFAD恢复时降为原数值,使比较器反相端处的信号与NFAD产生的尖峰噪声同步衰减的同时始终略高于噪声电平,实现该噪声的消除。

      除此以外,探测器的主控FPGA除了实现上述淬灭和死时间控制等功能外,还集成了精度达48 ps的时间相关单光子计数(TCSPC)功能,并可实现直方图统计输出,在不显著增加功耗的情况下,极大地增加了探测器的实用性。

    • 探测器的整体设计示意图如图2(a)所示。其尺寸为:54 mm × 42.8 mm × 50 mm,主要包括外壳、1550 nm集成制冷型NFAD器件、导热结构、电源电路板、控制电路板、淬灭电路板等组成。PNA-308-MM型NFAD固定在导热结构上,组件和导热结构通过导热硅脂填充空隙。导热结构通过导热系数高的导热垫片与外壳连接并由螺丝压紧,增强导热结构的散热能力。

      Figure 2.  Structure of integrated low noise InGaAs near-infrared single-photon detector based on NFAD. (a) Section view of the detector; (b) Heat dissipation structure of the detector (The red dashed circle indicates the position which is attached to the anti-interference shielding material, the blue area indicates the contact of NFAD housing and the heat sink)

      NFAD的TEC在使用过程中,由于Peltier效应会在TEC的底面产生热量堆积,而TEC底面已与管壳底部焊接,因此需要精细设计导热结构,以尽量降低管壳温度,保证NFAD的工作温度。如图2(b)所示,设计将淬灭电路板主体朝向器件外侧,平行于管壳底面,仅连接NFAD的阴阳两极和两个测温电阻管脚,避开管壳中心关键导热部分。导热体由镀锌铜制成,其边缘沿淬灭电路板边设计,两只TEC引脚通过散热体打孔穿出,直接连接至中间主控电路板,并由热缩管保护。上述设计在保证与引脚等电气部件的安全距离的同时,实现了器件管壳与散热结构的接触面积最大化。经软件建模测算,管壳底面与散热结构的接触部分占管壳底面的73.2%。

      此外,由于探测器中最易受干扰的部分为NFAD引脚和淬灭电路,设计最小化了NFAD的阴阳极管脚到电路板的长度,器件底面到淬灭电路的距离仅为1.4 mm,并在不影响散热的前提下在淬灭电路的正反面粘贴了铁氧体吸波材料,如图2中红色虚线圈部分所示。经上述处理后,探测器在无电磁屏蔽的环境内雪崩检测阈值低至9 mV,而该电路驱动的NFAD在10%探测效率时的典型雪崩信号幅度约28 mV,不会出现因雪崩信号漏检而导致探测效率下降的情况。

    • 搭建了测试平台对单光子探测器模块进行了性能测试,包括NFAD输出波形、单光子探测效率(Pde)、暗计数率(Cd)和后脉冲概率(Pap)。测试光源为PDL 800-B型半导体激光器,波长为1550 nm,脉冲激光的重复频率为19.5 kHz,经衰减器(EXFO FVA-3150)衰减后耦合进NFAD尾纤。在进行探测效率测量时,调整衰减器使得每脉冲平均包含的光子数为0.1,尽可能减少高计数率时死时间对探测效率测量的影响;在进行后脉冲测量时,保持与探测效率测量时相同的偏压、温度等条件,但将平均每脉冲光子数设定为1,以减少数据波动对测量准确性的影响。探测器波形由示波器(Tektronics MSO64)在比较器的同相端和反相端同时测量得出;性能参数测量使用了探测器主控FPGA内集成的时间相关单光子计数统计功能,将其输出直接连接至计算机进行数据采集。

      上述三个关键参数的计算公式如公式(1)~(3)所示,考虑到死时间较长时对暗计数的影响,暗计数率计算公式为:

      式中:τd为死时间;Cdr为无光照时FPGA内计数统计功能输出的每秒暗计数原始值。

      探测效率为:

      式中:μ为每个入射光脉冲平均包含的光子数;τw为统计光子计数时的时间窗口宽度;Cd 为暗计数率;Cph为光子计数率;fL为激光脉冲的重复频率。

      死时间后的总后脉冲概率为:

      式中:参数均来自时间相关单光子计数统计直方图,其中N(m)为有光照时死时间后第m个计数桶中的计数个数;$ {N}_{d}\left(m\right) $为仅有同步信号但无光照时第m个计数桶中的暗计数个数;n为死时间后光子计数统计桶的个数;Ni为有光照时间范围(约1 ns)内的计数个数;Nid为与统计Ni时有光照时间相同的时长内的暗计数个数。

    • 将恢复延迟设置为250 ns,用示波器探头同时采集比较器同相输入端和反相输入端信号,如图3所示,其中雪崩信号作了局部放大。图中同相端处存在正向的雪崩信号,在被鉴别后由于主动淬灭产生负向尖峰脉冲,幅度接近1 V,并逐渐弛豫至雪崩发生前电压。反相端此时由于FPGA迅速提高了鉴别电平,其在雪崩数ns后始终保持高于同相端电压,此时FPGA解除比较器锁存即可使比较器恢复比较功能。在250 ns后恢复信号使NFAD阴极电压瞬间提高,C-RC平衡消噪电路使反相端电压始终略高于同相端,从而阻止噪声误触发比较器动作。上述结果表明,雪崩提取和主动淬灭电路实现了其功能,避免了前置放大器的使用,减少了总热量产出。

      Figure 3.  Waveforms at the non-inverting (solid) and inverting (dashed) inputs of the comparator

    • 探测性能方面,实验获得了基于上述主动淬灭电路驱动的NFAD在自由运转模式下的性能参数,包括不同偏压、温度、死时间等条件下的探测效率、暗计数率和后脉冲概率,具体结果如下:

      NFAD制冷到−50 ℃,探测器工作在自由运转模式,死时间为2 μs时,探测效率与过偏压的关系如图4所示。该NFAD在−50 ℃时的击穿电压为77.0 V。过偏压在5.8 V以下时,探测效率随过偏压上升而增大。在过偏压为1.5、2.8、4.7 V时,探测效率分别为10%、20%和30%。在过偏压5.8 V时,探测效率最高可达33%,此时的过偏压率已达7.5%;继续提高过偏压,探测效率则随过偏压的升高不增反降。该现象可能由高偏压下过高的噪声计数率导致死时间占比过大,NFAD趋于饱和,使得正常探测光子的时间窗口减少所致。

      Figure 4.  Detection efficiency (Pde) as a function of excess bias

      实验测量了NFAD制冷至−50 ℃,探测器在不同探测效率时的暗计数率和后脉冲概率随死时间的变化,分别如图5图6所示。当探测效率为10%时,短死时间使暗计数率上涨的程度较小,死时间为120 ns的数值与死时间为10 μs的数值相比仅增加了19.4%左右;探测效率为20%时约为1.5倍。而在探测效率高于25%时,暗计数率随死时间的降低迅速上升,这是由于在死时间较短时,后脉冲概率陡增,出现大量由暗计数引发的后脉冲及次生高阶后脉冲所致。

      Figure 5.  Dark count rate as a function of dead time at different detection efficiencies

      Figure 6.  Total afterpulse probability as a function of dead time at different detection efficiencies

      在无前置放大器的低延迟主动淬灭电路和NFAD集成大淬灭电阻的共同作用下,探测器的总后脉冲概率较同类研究进一步降低。实际应用通常需将总后脉冲概率控制在15%以下,该探测器若需达到该要求,在10%、15%、20%、25%和30%时分别需将死时间设置在120 ns、600 ns、2 μs、5 μs和10 μs即可,见图6。在设为最短死时间120 ns、探测效率10%时,其暗计数率890 Hz,后脉冲概率仅10.6%,非常适用于后向散射和背景光等噪声光子数较大时对目标的探测,可以应用于激光雷达等应用。

      在室温为20 ℃时,探测器最低可在制冷温度设置为−58 ℃时稳定工作,在120 ns死时间下,探测效率10%、15%、20%时的后脉冲概率分别约14%、51%和190%,略高于−50 ℃时的结果。为了更好地表征不同温度对探测器性能的影响,设定死时间为350 ns,测得探测效率分别为10%、15%、20%和25%时暗计数率和总后脉冲概率随温度的变化,如图7所示。

      Figure 7.  Total afterpulse probability versus dead time at different detection efficiencies

      总体看来,在同一探测效率下,后脉冲概率随温度的升高而降低,−30 ℃时的后脉冲概率约为−58 ℃时的70%。暗计数率随温度的升高迅速增加,−50 ℃、−40 ℃和−30 ℃时的暗计数率分别约为−58 ℃时的1.8倍、4.7倍和13.2倍。而且,由于高阶后脉冲的存在,暗计数率的增长速率也在随温度的升高而变大。考虑到不同实际应用环境中背景光贡献的噪声计数可能差异较大,工作温度需要根据实际情况灵活选择。例如,若环境背景噪声光子数较大,设置稍高的工作温度反而可能由于后脉冲概率较低而获得更小的总噪声计数率。

    • 文中针对1550 nm激光雷达对单光子探测器高集成度、低噪声的应用需求,研制了基于InGaAs NFAD的集成型近红外单光子探测器。针对NFAD器件易受到外界干扰的问题,通过无前置放大器的高速混合淬灭电路设计,结合优化的器件-电路互联和屏蔽结构设计,实现了稳定工作。同时,对集成热电制冷和高速淬灭电路自身高功耗、发热量较大的特点设计了散热方案。所研制的探测器最大可用探测效率约为33%,最低制冷温度为−58 ℃;−50 ℃、死时间120 ns时后脉冲概率仅为10.6%,暗计数率低至890 Hz。综上所述,探测器的综合性能优异,非常适用于使用环境体积受限的激光雷达系统。

Reference (13)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return