Volume 52 Issue 12
Dec.  2023
Turn off MathJax
Article Contents

Li Liya, He Song, Zhao Zhu, Song Ya, Cai Rong, Zhang Changmeng, Fan Ruifeng, Yu Dongyi. Construction and development of LSS target prevention and control system[J]. Infrared and Laser Engineering, 2023, 52(12): 20230034. doi: 10.3788/IRLA20230034
Citation: Li Liya, He Song, Zhao Zhu, Song Ya, Cai Rong, Zhang Changmeng, Fan Ruifeng, Yu Dongyi. Construction and development of LSS target prevention and control system[J]. Infrared and Laser Engineering, 2023, 52(12): 20230034. doi: 10.3788/IRLA20230034

Construction and development of LSS target prevention and control system

doi: 10.3788/IRLA20230034
  • Received Date: 2023-01-18
  • Rev Recd Date: 2023-09-22
  • Available Online: 2023-12-22
  • Publish Date: 2023-12-22
  •   Significance   In recent years, there has been a significant proliferation of "low-slow-small" targets (LSS) represented by unmanned aerial vehicles (UAVs), which are extensively utilized in industries such as film and television aerial photography, low-altitude logistics, security monitoring, and aerial surveying. However, owing to their easily accessible, controllable and concealable characteristics, micro-drones are susceptible to exploitation by hostile forces for illegal activities like reconnaissance and sabotage that pose serious risks to confidentiality and security for both military and civilian sectors. Furthermore, the LSS represented by UAVs have demonstrated their substantial combat capabilities in modern warfare while representing the development trend of future information warfare. However, existing defense systems and operational equipment continue to confront numerous technological challenges pertaining to effective detection and discovery mechanisms, intelligent information fusion techniques, reliable defense and interception capabilities, as well as system platform integration issues. In practical applications though, problems such as varying degrees of standardization across different contexts exist alongside inadequate operational capabilities under complex environmental conditions and unreliable regular usage.   Progress   Firstly, based on the analysis of the characteristics associated with LSS, a fundamental approach for detection and disposal is proposed. In terms of detection requirements, it is essential to design systems that address three specific characteristics of low-altitude/ultra-low-altitude flights, slow speeds, and weak infrared radiation characteristics/small radar cross-sections. Regarding disposal strategies, effective communication interference should be implemented based on the target's data link traits and navigation methods. Additionally, the physical attributes of LSS should guide the design of interception and destructive measures.   Subsequently, this study addresses the development of a robust target defense and control system architecture with emphasis on LSS. Operational procedures are also designed to ensure efficient execution. During operations, the detection system provides real-time target information including position, motion characteristics, electromagnetic spectrum data, and other relevant details for multiple targets within the defense zone through multimodal information fusion. This enables the creation of a comprehensive situational awareness map for effective defense and control. Target classification and identification are performed using advanced feature extraction and classification methods. The command system then prioritizes target threats based on three-dimensional situational analysis in conjunction with current contextual information to issue appropriate disposal orders according to allocation principles. Finally, selected disposal methods are implemented to effectively address the identified targets while completing the operational loop of OODA (observe, orient, decide, act).   Lastly, this paper proposes the key trends in the development of LSS defense and control. The construction of such systems requires addressing key issues and implementing development strategies including standardization, normalization, and cost-effectiveness.   Conclusions and Prospects  Among these strategies, optical detection emerges as a significant passive method with promising application prospects for future low-altitude detection tasks focused on urban warfare. It offers advantages such as all-weather capability, visualization, high precision, and strong anti-jamming capabilities to overcome challenges related to target discovery and identification. The increasingly complex battlefield environment and evolving advanced operational modes like UAV swarms impose new technological requirements on optical detection. On one hand, integrating optical detection into early warning systems can leverage its advantages through comprehensive coordination of airspace management, platform deployment optimization, spectrum utilization efficiency enhancement, and information perception improvement to enhance overall operational efficiency. On the other hand, optical detection should address the challenges associated with large field-of-view coverage, detection at high resolutions, multi-target tracking, and positioning capabilities while also enhancing intelligent identification performance. It should also expand optical information perception dimensions, such as polarization analysis and multispectral imaging, to provide robust support in addressing low-altitude detection challenges.   As drone technology continues to advance, the defense and control of LSS represented by drones emerge as crucial areas and technical challenges in the future development of low-altitude defense. The consensus is to develop an integrated defense and control system that encompasses agile command, composite detection, and multimodal disposal. However, due to the unique characteristics of LSS and their diverse operational scenarios, existing technological means are insufficient in fundamentally addressing the issues related to detection and disposal. Therefore, it is imperative to gradually enhance the construction of the LSS defense and control system through continuous testing and utilization while summarizing relevant experiences. This iterative process will provide valuable feedback for optimizing the existing defense mechanisms in order to effectively safeguard LSS.
  • [1] Yan Chao, Tu Lianghui, Wang Yuhao, et al. Application of unmanned aerial vehicle in civil field in China [J]. Flight Dynamics, 2022, 40(3): 1-6. (in Chinese) doi:  10.13645/j.cnki.f.d.20220412.006
    [2] Wang Xiangke, Liu Zhihong, Cong Yirui, et al. Miniature fixed-wing UAV swarms: review and outlook [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 023732. (in Chinese) doi:  10.7527/S1000-6893.2019.23732
    [3] Yan Lei, Liao Xiaohan, Zhou Chenghu, et al. The impact of UAV remote sensing technology on the industrial development of China: a review [J]. Journal of Geo-information Science, 2019, 21(4): 476-495. (in Chinese) doi:  https://doi.org/10.12082/dqxxkx.2019.180589
    [4] Fan Bangkui, Zhang Ruiyu. Unmanned aircraft system and artificial intelligence [J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1523-1529. (in Chinese) doi:  10.13203/j.whugis20170177
    [5] Qi Meng, Wang Lin, Zhao Zhu, et al. Advanced low-slow-small targets detection and disposal system construction [J]. Laser & Infrared, 2019, 49(10): 1155-1158. (in Chinese) doi:  10.3969/j/issn.1001-5078.2019.10.001
    [6] Dong Shangwei, Tian Zhimin, Tian Ce, et al. Research on protection of important military constructions against UAV incursions [J]. Protective Engineering, 2022, 44(2): 72-78. (in Chinese)
    [7] Yuan Pengge. A new challenge of public safety-small-scale unmanned aircraft management research studies [J]. Journal of Civil Aviation Flight University of China, 2018, 29(3): 63-67. (in Chinese)
    [8] Dang Aiguo, Wang Kun, Wang Yanmi, et al. The impact of UAVs swarming fighting concept development on attack and defense in future battlefield [J]. Tactical Missile Technology, 2019, 1: 37-41, 86. (in Chinese) doi:  10.16358/j.issn.1009-1300.2019.8.041
    [9] Liu Shiyang, Shi Shuai. Application and enlightenment of UAV in NAKA conflict [J]. Ordnance Industry Automation, 2021, 40(11): 43-45, 59. (in Chinese) doi:  10.7690/bgzdh.2021.11.010
    [10] Yang Jiahui, Zhu Chaolei, Xu Jia. Analysis of UAV deployment in Russia-Ukraine conflict [J]. Tactical Missile Technology, 2022, 3: 116-123. (in Chinese) doi:  10.16358/j.issn.1009-1300.20220081
    [11] Ma Wen, Chigan Xiaoxuan. Research on development of anti-UAV technology [J]. Aero Weaponry, 2020, 27(6): 19-24. (in Chinese) doi:  10.12132/ISSN.1673-5048.2020.0089
    [12] Zhang Jing, Zhang Ke, Wang Jingyu, et al. A survey on anti-UAV technology and its future trend [J]. Advances in Aeronautical Science and Engineering, 2018, 9(1): 1-8, 34. (in Chinese) doi:  10.16615/j.cnki.1674-8190.2018.01.001
    [13] Zhang Huawei, Liu Haipeng, Shi Chunpeng. Research on development of anti low-altitude and slow-speed small unmanned aerial vehicle technology [J]. Electro-optic Technology Application, 2021, 36(3): 7-10. (in Chinese)
    [14] Qu Xutao, Zhang Dongye, Xie Haibin. Detection methods for low slow small (LSS) UAV [J]. Command Control & Simulation, 2020, 42(2): 128-135. (in Chinese)
    [15] Xu Daoming, Zhang Hongwei. Overview of radar LSS target detection technology [J]. Modern Defence Technology, 2018, 46(1): 148-155. (in Chinese) doi:  10.3969/j.issn.1009-086x.2018.01.024
    [16] Xi Yuding, Yu Yong, Ding Yuanyuan, et al. An optoelectronic system for fast search of low slow small target in the air [J]. Opto-Electronic Engineering, 2018, 45(4): 170654. (in Chinese) doi:  10.12086/oee.2018.170654
    [17] Zhu Mengzhen, Chen Xia, Liu Xu, et al. Situation and key technology of tactical laser anti-UAV [J]. Infrared and Laser Engineering, 2021, 50(7): 20200230. (in Chinese) doi:  10.3788/IRLA20200230
    [18] Fu Xin, Zhao Ran, Liang Yanfeng, et al. Review on the development of anti UAV bee colony technology [J]. Journal of CAEIT, 2022, 5: 421-428. (in Chinese) doi:  10.3969/j.issn.1673-5692.2022.05.003
    [19] Zhao Zhu, Wang Yi, Fan Ruifeng, et al. Modeling on anti-UAV system-of-systems combat OODA loop based on NetLogo [J]. Journal of System Simulation, 2021, 33(8): 1791-1800. (in Chinese) doi:  10.16182/j.issn1004731x.joss.20-0355
    [20] Zhang Yanyan, Chen Hong, Yan Zhenlin, et al. The technology of high-power microwave anti-bee swarm drone [J]. Electronic Information Warfare Technology, 2020, 35(4): 39-43. (in Chinese)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)  / Tables(1)

Article Metrics

Article views(262) PDF downloads(72) Cited by()

Related
Proportional views

Construction and development of LSS target prevention and control system

doi: 10.3788/IRLA20230034
  • 1. North China Institute of Optoelectronic Technology, Beijing 100020, China
  • 2. CETC Electro-optics Technology Corporation Limited, Beijing 100020, China

Abstract:   Significance   In recent years, there has been a significant proliferation of "low-slow-small" targets (LSS) represented by unmanned aerial vehicles (UAVs), which are extensively utilized in industries such as film and television aerial photography, low-altitude logistics, security monitoring, and aerial surveying. However, owing to their easily accessible, controllable and concealable characteristics, micro-drones are susceptible to exploitation by hostile forces for illegal activities like reconnaissance and sabotage that pose serious risks to confidentiality and security for both military and civilian sectors. Furthermore, the LSS represented by UAVs have demonstrated their substantial combat capabilities in modern warfare while representing the development trend of future information warfare. However, existing defense systems and operational equipment continue to confront numerous technological challenges pertaining to effective detection and discovery mechanisms, intelligent information fusion techniques, reliable defense and interception capabilities, as well as system platform integration issues. In practical applications though, problems such as varying degrees of standardization across different contexts exist alongside inadequate operational capabilities under complex environmental conditions and unreliable regular usage.   Progress   Firstly, based on the analysis of the characteristics associated with LSS, a fundamental approach for detection and disposal is proposed. In terms of detection requirements, it is essential to design systems that address three specific characteristics of low-altitude/ultra-low-altitude flights, slow speeds, and weak infrared radiation characteristics/small radar cross-sections. Regarding disposal strategies, effective communication interference should be implemented based on the target's data link traits and navigation methods. Additionally, the physical attributes of LSS should guide the design of interception and destructive measures.   Subsequently, this study addresses the development of a robust target defense and control system architecture with emphasis on LSS. Operational procedures are also designed to ensure efficient execution. During operations, the detection system provides real-time target information including position, motion characteristics, electromagnetic spectrum data, and other relevant details for multiple targets within the defense zone through multimodal information fusion. This enables the creation of a comprehensive situational awareness map for effective defense and control. Target classification and identification are performed using advanced feature extraction and classification methods. The command system then prioritizes target threats based on three-dimensional situational analysis in conjunction with current contextual information to issue appropriate disposal orders according to allocation principles. Finally, selected disposal methods are implemented to effectively address the identified targets while completing the operational loop of OODA (observe, orient, decide, act).   Lastly, this paper proposes the key trends in the development of LSS defense and control. The construction of such systems requires addressing key issues and implementing development strategies including standardization, normalization, and cost-effectiveness.   Conclusions and Prospects  Among these strategies, optical detection emerges as a significant passive method with promising application prospects for future low-altitude detection tasks focused on urban warfare. It offers advantages such as all-weather capability, visualization, high precision, and strong anti-jamming capabilities to overcome challenges related to target discovery and identification. The increasingly complex battlefield environment and evolving advanced operational modes like UAV swarms impose new technological requirements on optical detection. On one hand, integrating optical detection into early warning systems can leverage its advantages through comprehensive coordination of airspace management, platform deployment optimization, spectrum utilization efficiency enhancement, and information perception improvement to enhance overall operational efficiency. On the other hand, optical detection should address the challenges associated with large field-of-view coverage, detection at high resolutions, multi-target tracking, and positioning capabilities while also enhancing intelligent identification performance. It should also expand optical information perception dimensions, such as polarization analysis and multispectral imaging, to provide robust support in addressing low-altitude detection challenges.   As drone technology continues to advance, the defense and control of LSS represented by drones emerge as crucial areas and technical challenges in the future development of low-altitude defense. The consensus is to develop an integrated defense and control system that encompasses agile command, composite detection, and multimodal disposal. However, due to the unique characteristics of LSS and their diverse operational scenarios, existing technological means are insufficient in fundamentally addressing the issues related to detection and disposal. Therefore, it is imperative to gradually enhance the construction of the LSS defense and control system through continuous testing and utilization while summarizing relevant experiences. This iterative process will provide valuable feedback for optimizing the existing defense mechanisms in order to effectively safeguard LSS.

    • 近年来,以无人机为代表的“低慢小”目标出现爆发式增长,广泛应用于影视航拍、低空物流、安防监控、空中测绘等行业[1-6]。但由于微小型无人机具有易获取、易操控、易隐藏等特点,便于敌对势力利用微小型无人机进行窥探、破坏等非法活动,从而对各项活动的安保工作带来了严重隐患。主要体现为:1)威胁国家城市的防护安全。现有城市防护体系在城市等复杂低空环境下,对“低慢小”目标的探测、识别困难;此外,城市防御系统需要付出高成本火力输出以对抗低成本“低慢小”目标的突防袭击,效费比低,对城市防空安全构成极大的非对称性威胁;2)威胁要人要地的安全[6]。不法分子利用微小型旋翼无人机近距离突袭,非法进入重要核心区域进行窥视,造成严重的政治影响;利用无人机协同和精确引导,向要地、高价值目标、核心人员等重要目标进行定点清除,带来巨大威慑;3)威胁社会公共安全[7]。不规范、无资质、未经审批的微小型无人机活动对社会公共安防秩序造成不良的影响和损失,如无人机“黑飞”阻碍机场航班起降、扰乱机场秩序的事件等;恐怖分子利用小型无人机开展各类暴恐活动,造成平民伤亡和财物损失,对地区安全带来严重安全隐患。

      此外,以无人机为代表的“低慢小”目标已经在现代战争中展现出其显著的作战威力,是未来信息化战争的发展趋势[8-10]。典型事件如:1) 2018年1月5日~6日,俄军赫梅米姆空军基地和塔尔图斯海军基地遭到13架各自携带10枚400 g小型弹药、采用GPS航迹点规划航路自主飞行的不明身份无人机攻击,实现了初步具备低空突防和饱和打击实战能力的初级无人机集群作战系统;2) 2020年1月,美军使用“MQ-9死神”无人机,对伊朗核心人物苏莱曼尼实施精确的“定点清除”行动,对地区局势产生重要影响;3) 2020年的纳卡冲突,双方均倚重无人机进行空战对抗,其中阿塞拜疆采购的“TB-2”察打一体无人机发挥突出作用,多次摧毁亚美尼亚的重要目标,从而有力占据了战场主动。

      可见,以微小型无人机为代表的“低慢小”目标防控与反无人机作战已成为世界性难题。对此,国外涌现了大量的反无人机产品[11-13],如英国AUDS无人机防控系统、德国R&S无人机侦察干扰系统等,国内也有多家企业研制了多款微小型旋翼无人机防控设备。除了反无人机系统、设备研制外,针对反无人机的试验与演习也不断开展,如美国“黑色飞镖”,国内“无形截击”、“无人争锋”等。

      但是,现有防控系统和设备在有效探测发现、智能信息融合、可靠防御拦截、系统平台集成等方面仍面临诸多技术挑战;在实际应用中,存在制式化程度差、复杂环境条件下能力不足、常态化使用不可靠等问题。文中从实际应用的角度出发,结合近10年的工程经验,对“低慢小”目标管控的技术体系建设发展现状与思路进行了分析和讨论。

    • “低慢小”目标指飞行高度在1 km以下、飞行时速小于200 km、雷达反射面积小于2 m2的航空器具。由“低慢小”的目标特性及其造成的防控难题具体体现在:

      1)低空/超低空飞行:通常低空指1 km以下,超低空为100 m以下,空域内地面杂物、建筑物、飞鸟等干扰物体较多,对“低慢小”目标的探测信号干扰很大,具体包括物理遮挡、噪声干扰、电磁干扰、信号衰减等;

      2)低速/悬停飞行:无人机目标可以任意指定空域悬停,或超低速度飞行。雷达探测主要依靠目标运动带来的多普勒效应区分动目标和静态目标/干扰,切向速度需要大于一定值,才能够区分出运动目标和固定目标,因此,低速或悬停目标不利于雷达探测;

      3)小尺寸弱辐射:通常,微小型无人机轴距在亚米量级,RCS和辐射表面积较小,难以通过传统雷达、光电手段被发现;采用电池动力飞行,与环境背景温差较小、辐射特征弱,不利于红外远距离探测到。

      随着技术的发展,“低慢小”目标的飞行高度更低、飞行速度更慢、雷达散射截面(RCS)更小、红外辐射特性更弱、数据链特征和导航方式更为复杂。因此,在探测方面,需要针对低空/超低空、慢速、红外辐射特性弱/雷达反射截面积小等三个特点进行设计;在处置方面,根据目标的数据链特征和导航方式进行有效的通信干扰,根据“低慢小”目标的物理特性,进行拦截毁伤等硬杀伤手段设计。

    • “低慢小”目标的探测发现,基于目标散射、辐射、发射的信号,通过接收、处理和确认,主要技术手段有雷达、光电、无线电、声学等[14]。不同探测手段的优点和问题如表1所示。

      MethodsAdvantagesDisadvantages
      Radar detectionAll-weather operation,
      provides distance information,
      long detection range,
      high detection efficiency
      The low-altitude detection exhibits a high false alarm rate, susceptibility to electronic interference, blind spots in close-range detection, inadequate resolution of detection, and a low probability of identification
      Optical-electronic detectionHigh detection accuracy,
      strong identification capability,
      visualized information,
      fully passive detection
      The field of view is limited, resulting in a reduced detection efficiency. Additionally, the lack of distance information in a single installation hinders accurate assessment. Moreover, this system exhibits inadequate adaptability to extreme weather conditions and fails to detect non-line-of-sight targets
      Radio detectionAll-weather operation,
      high detection efficiency,
      ability to identify spectrum features, aircraft type,
      and operator location
      Limited detection accuracy; inadequate performance against electromagnetically silent targets; vulnerable to interference in complex electromagnetic environments
      Acoustic detectionAll-weather operation,
      360° omni-directional,
      ability to detect targets behind obstacles
      Limited detection range; suboptimal performance in noisy environments; reduced acoustic detection accuracy; challenges in target profiling
      Electronic interferenceStrong all-weather operational capability,
      ability to engage multiple targets with high efficiency
      Urban usage may induce interference directionality, rendering it ineffective against non-electromagnetic or electromagnetically silent targets.
      Aerial net capture/net dispensingMinimizes collateral damage,
      enables evidence collection
      The operational efficiency of a single aerial net capture drone is limited to one target, resulting in low effectiveness; additionally, the high cost associated with the deployment of net dispensing equipment poses a significant financial burden
      Laser interceptionComplete destruction of target,
      causing blindness and dizziness
      Limited environmental adaptability; tracking and aiming involve significant technical challenges; urban deployment may result in collateral damage and pose potential safety risks
      High-power microwaveEffective against a group of targets,
      high efficiency in target engagement
      Significant interference in urban environments, coupled with substantial volume, weight, and power consumption, necessitates further technological advancements for improved maturity

      Table 1.  Analysis of the advantages and disadvantages of different detections and processing methods

      雷达通常对“高”、“快”或“大”目标有良好的探测效果,受天气环境影响小,探测距离远,探测效率高,是目标预警探测的主要手段[15]。但是,与传统威胁目标的特性不同,“低慢小”目标与地物杂波接近、多普勒频移不明显、RCS积小,因此雷达低空探测抗干扰能力弱、虚警高,甚至对悬空静止目标探测失效;作为有源探测手段,容易受到电子干扰影响而严重降低探测性能。此外,雷达探测手段存在固有缺点,如近程探测盲区、探测分辨率不足、探测精度和识别概率较低等。

      光电探测可通过红外、可见光、激光波段,对“低慢小”目标自身辐射能量或反射能量进行被动探测,并实现高精度跟踪和识别,对低空地物杂波的抗干扰能力较强,探测效果直观,并可全天时工作;作为无源探测手段,具有良好的战场抗干扰能力[16]。但是,光电探测手段受气象环境影响较为显著,逆光无法有效探测,大气衰减、湍流影响大;探测能力较弱,探测效率较低;在复杂背景环境下,目标信号容易淹没在背景信号中,检测和跟踪难度较大;在视场存在物理遮挡的情况下,难以进行有效探测。

      无线电侦测技术主要探测小型无人机的图传、遥测信号等,受天气环境影响小,侦测效果不受无人机尺寸、形状、速度、材料的限制,具有开机即发现的侦测效率,能够对典型商用无人机进行型号识别,还可对非法操控者进行定位,通视要求相对较低。但是,由于城市电磁环境复杂,无线电侦测性能受到影响;对采用加密、跳频、特殊频段等遥控技术的无人机目标,无线电侦测技术很难发挥作用;对采用路径规划飞行的无人机目标、空飘球等,无线电侦测手段将失效。

      声学探测可接收并识别“低慢小”航空器发动机、旋翼和大气摩擦所产生的特征声信号,可实现全天候、全天时探测,并且对物理遮挡的目标可进行较好的探测。但是,在城市环境下,“低慢小”目标的声学特性极易隐藏或受到干扰,很难被准确探测、识别,探测距离有限;对空飘球等“低慢小”目标探测能力失效。

    • 对“低慢小”目标的处置,主要是干扰、捕获以及毁伤等方式。通过对测控链路和GPS的压制式干扰或者欺骗式干扰实现对目标的驱离和劫持;通过发射网枪或网弹的方式,阻止无人机目标飞行并将其捕获;使用激光、高功率微波等定向能武器,或者是传统的动能武器,对目标进行摧毁。不同处置手段的优点和问题如表1所示。

      干扰手段通过定向发射高功率无线电信号,压制无人机遥控信号或导航信号,使得无人机目标的飞行控制系统和导航定位系统无法正常工作,迫使无人机悬停、迫降或返航,干扰频段一般为900 MHz、2.4 GHz、5.8 GHz以及GPS、北斗等通信、定位信号频段,具有作用距离远、处置效率高、全天候工作等优点。但在城市环境下,无线电/导航干扰可能对生活用频、民航导航等造成不利干扰;随着跳频、扩频等遥控技术的发展,无线电干扰效能受到影响;对采用程控模式的无人机、空飘球等“低慢小”目标,干扰手段将会失效。

      捕获手段主要通过发射捕网抓捕无人机,包括网枪、网弹或网捕无人机等。网捕手段的主要优点是可以通过捕获无人机、空飘球等“低慢小”目标进行取证,且附带损伤小。但是,网捕手段为单目标处置手段,不适用于对多目标处置,且需要光电设备进行精确引导,特别是对机动目标的捕获概率较低,因此处置效能很低。

      激光拦截技术通过高功率激光束对目标进行毁伤,是末端防御的有效手段,成本低,逐渐成为近年来的研究热点[17]。但是,激光武器受大气条件影响较大,处置能力有限;对跟踪瞄精度要求高,精确跟踪技术难度大;点杀伤手段效能低;在城市环境使用存在安全风险,且毁伤目标坠落可能造成较为严重的二次损伤;体积、质量和功耗较大,机动性不高。

      高功率微波(HPM)是利用高功率微波波束毁坏电子设备的一种定向能武器,可在一定空域内、远距离“烧坏”无人机目标等目标的电子器件,使其毁伤、坠落[18]。通过宽波束“面”杀伤方式,攻击速度快,控制精度要求低,效率高,特别适用对集群目标的对抗;成本低,效费比高,有效应对饱和攻击威胁。但是,存在城市环境干扰严重,体积、质量和功耗较大,工程应用程度不高等问题。

    • 通过对“低慢小”目标探测、处置手段的特点及防控问题的分析,可以看出目前尚无单一手段能够解决全部问题。因此,“低慢小”目标防控体系需要集成了探测、识别、对抗、打击等多种要素,以完成对无人机目标的多维度感知和多层次防控任务,形成分布式、网络化防控体系,并通过指挥控制系统的统一管理,实现一体化、集成化运用。

      “低慢小”目标防控体系是典型的信息化系统,从探测发现目标、分类识别目标、判断处置决策、行动处置目标,遵循OODA模型理论。对于“低慢小”目标的防控,一般情况下是近程防御,对高效探测、快速识别、准确决策、有效处置提出更高要求。最大化压缩探测、识别、决策和处置的循环周期对于“低慢小”目标防控具有重要意义。因此,“低慢小”目标防控的本质是OODA过程的体系对抗,冲突集中体现在OODA环的时间竞争上,缩短己方的OODA周期,即可赢得主动权[19],如图1所示。因此,“低慢小”目标防控体系建设以指挥控制技术为核心,实现高效的OODA循环,采用多传感器复合探测,实现效能互补和动态联动;使用多手段“软”“硬”结合,实现立体多层防御。

      Figure 1.  OODA loop for LSS-target prevention and control system

      典型的“低慢小”目标防控体系架构如图2所示。工作时,根据探测系统获取的目标信息,通过多元信息融合给出防控区域内多目标的实时位置、运动特征、电磁频谱等信息,形成防控区域的空情态势图;然后采用目标特征提取、分类方法对目标进行分类识别;之后,指挥系统根据防控区域的三维态势,结合当前空情信息,进行目标威胁排序,并根据使用场景,依据处置分配的原则,下达处置命令;最后,使用选定的处置手段对目标进行相应处置,完成“低慢小”目标防控任务,形成一次完整的OODA循环,如图3所示。

      Figure 2.  The architecture of LSS-target prevention and control system

      Figure 3.  Operational process of LSS-target prevention and control system

      体系建设时考虑如下要素:

      1)复合组网探测

      为了实现对“低慢小”目标的全天时、全天候、全方位探测,采用雷达、光电、无线电、声学等技术手段相互结合的多谱段电磁探测体系;根据使用场景和传感器的使用特点,采用高低搭配、分布式部署等实现全区域覆盖,同时,通过数据融合实现效能互补,实现对目标的探测发现、跟踪定位、分类识别等。为了实现大范围防控,通过协同组网和信息融合实现动态联动,提升系统整体的探测、定位能力。根据使用需要,对探测区域范围划分为发现区和识别区,分别制定相应的技术指标。发现区要求发现并告警威胁目标;识别区对任何威胁目标完成分类和识别,如图4所示。

      Figure 4.  Composite detection networking

      2)综合判断决策

      根据多传感器目标探测信息进行融合形成三维空情态势信息,根据数据融合信息、目标识别信息等,识别来袭目标的状态,进而对其进行威胁排序,依据处置手段的分配原则,选择合适的处置手段完成快速、准确的处置决策,提高自动化程度,降低人员操作难度和工作压力。

      3)多元分级处置

      为了实现对“低慢小”目标的有效处置,根据使用场景和目标的特点(远近、高低、方向、类型等),合理分配处置方式,建立无线电干扰、激光干扰、无人机网捕对抗、激光拦截、高功率微波、动能武器等的多元处置能力,实现软对抗与硬毁伤的有机结合。根据使用需要,选择合适的处置方式实现远中近三级防护,逐级瓦解低空目标的威胁能力,如图5所示。

      Figure 5.  Multivariate hierarchical processing

      4)开放平台,按需重构

      多平台架构设计,形成城市、车载、机载的多平台工作能力;固定式装备完成日常防护需要,机动时装备能快速布防,满足不同的任务需求。通过模块化、开放式架构设计,系统能够按照任务、环境、单元毁伤情况,快速、灵活地对组成要素进行更换、维修、剪裁和扩展,以适应各种变化,提高生存能力。

    • “低慢小”防控体系是一个具有适应性的动态系统,它由相互联系、相互制约的探测、指控、通信、处置系统,以及在防控范围内的敌方目标构成,是系统的有机集成,把装备、计算机、通信、人员和平台等利用必须的网络信息技术捆绑在一起,有机地融合成一体化防控体系,并且在运行时达到信息实时共享、控制与协同一体化[20]

      目前,“低慢小”防控主要集中在单装设备的研发和生产,系统建设大多是将各型设备进行简单组合,很难达到预期的效能,并且在体系建设中,需要充分考虑使用的具体需求,进行合理的规划和协调。目前体系建设的主要问题和发展思路如下:

      1)标准化

      根据“低慢小”防控的特点,制定相应的标准和规范,用于规定相应的指控、探测、处置、管控装备的技术要求和接口标准,实现“低慢小”防控体系的标准化,可以实现各种各型设备的无障碍接入。

      2)常态化

      “低慢小”目标获取容易,“黑飞”时有发生,常态化防控是“低慢小”防控体系的最大特点,常态化使用意味着更高的寿命和可靠性。除了靠提升装备性能外,常态化使用策略和运用也尤为重要。

      3)低成本

      “低慢小”目标成本很低,如何实现防控系统与防控目标成本的尽可能匹配,一直是“低慢小”防控体系建设的问题,小型化低成本设备的分布式布防是一种重要的发展思路。

    • 如上所述,针对“低慢小”目标的探测,不是任何一个单一技术手段就可以解决的,复合探测是体系建设必须考虑的。雷达、光电、无线电、声等是最为有效和常用的探测手段;其探测原理是一致的,都是基于信号的接收与处理,实现目标发现、告警、分类与识别。根据“低慢小”目标的特点,选择合适的探测技术体制,推动技术的发展。

    • “低慢小”目标的雷达探测技术的核心问题是如何抑制较强的低空背景杂波和干扰(鸟、车等),并从中检测到弱小、慢速的目标;因此,技术应该朝着更高分辨力(距离、速度)探测能力、强杂波抑制能力的方向发展,同时雷达应具备一定的目标分类辨识能力。

      结合实际的使用情况,在雷达体制选择上,连续波雷达相较于脉冲体制,对于“低慢小”目标检测有着与生俱来的优势,应根据使用的具体需求,进行技术体制的选择;同时为了实现雷达与光电等其他探测手段高效精确的联动、以及与处置手段的精准引导,三坐标雷达是“低慢小”目标探测的发展方向。在工作频段上,为了实现更高的探测分辨力,抗大气衰减和杂波干扰,探测频段选择更向Ku、X等高频段的方向发展。低空杂波抑制上,采用窄波束和低副瓣天线技术,降低地物杂波影响;高距离分辨技术提高目标与干扰的区分度;通过长相参积累时间的方法提高速度分辨力,进而提升分辨目标和背景杂波的能力;采用频率捷变解决多路效应盲区问题;通过精细化的信号处理设计,区分目标与杂波和干扰,提升目标识别能力,进行目标分类与辨识。

    • “低慢小”目标光电探测技术的核心需求有两个,一是雷达引导下的目标跟踪和识别;二是复杂背景下自主探测发现、跟踪定位和分类识别;因此,更远距离探测、更高分辨能力、更大视场覆盖范围是技术主要发展方向。

      光电探测在低空复杂背景和复杂电磁环境下,有与生俱来的探测优势。在技术体制上,需要从探测系统的任务需求出发,合理设计技术体制,实现低空高性能的探测;比如光电搜跟分离、搜跟一体、分布式全景探测等技术体制。与雷达探测相比,光电探测距离较近,探测覆盖范围较小,提升探测器件能力和增加规模是最直接的解决办法;为了实现远距离探测,除长焦大口径光学设计、高探测灵敏度外,应该通过探测器波段的优化选择、精细化光机联合设计、低噪声电学设计、低信噪比信号检测等进一步提升探测极限能力。为了实现更优的目标识别能力,除了长/超长焦距的光学系统设计外,可以运用计算机视觉、类脑计算等交叉学科的研究成果,提升智能识别的能力,拓展设备硬件设计的极限能力。

    • “低慢小”目标的电子侦测技术的核心问题是如何在复杂的电磁环境中侦测使用某种通信频段的目标,因此,技术应该朝着更强的侦察能力、强杂波抑制能力、更精确的位置估计的方向发展,同时应根据侦测到的信号进行目标类型和型号的识别。

      电子侦测技术最大优势是无源探测,可以对无人机的数传、图传、导航等信号进行实时监测、分析和测向。在城市等复杂电磁环境下,利用软件无线电技术实现全频段,大动态高灵敏的侦收技术,精细化信号特征参数提取和识别分选技术,实现复杂电磁环境中无人机数传、图传信号的提取;同时利用高精度无线电测向、时差定位技术,实现对无人机信号的定位。无线电信号识别是无线电侦测系统的核心技术,无线电信号可以精确实现无人机机型的辨识,无线电信号识别的难点是如何建立完备的特征数据库,并能提取出精确区分不同机型无人机的特征;随着深度学习等智能识别算法的发展,也将更好地推动无线电信号识别技术的发展。

    • “低慢小”目标的声学探测技术的核心问题是如何在复杂的声环境中检测出飞行中无人机发出的声信号,并根据声信号对目标进行辨识;因此,技术应该朝着更强的侦察能力、强杂波抑制能力的方向发展,同时应根据侦测到的信号进行目标类型和型号的识别。

      声学技术利用无人机飞行时产生的特殊“音频指纹”进行探测识别,可作为末端防御,成为雷达、光电等探测技术的有益补充。通过远距离高精度声探测技术、声测站优化部署和融合技术等,提升声探测对“低慢小”飞行器的探测距离;建立丰富的目标声学特征库的是声识别的关键,深度学习智能算法的发展也将很好地促进声学探测的发展。

      综上,“低慢小”目标的探测必须是多种手段的综合协同,在实际应用过程中,使用场景的复杂性远远超出了测试测量环境,需结合场地条件进行部署优化,实现探测效能的最大化,通过多源多维度数据的融合实现信息最优化利用。在实际使用过程中,还需要根据各型设备的技术体制和参数设计,进行适应性的调试、优化和深度融合,才能达到既定的防护需求。此外,结合未来城域大面积、常态化布防和值守的使用需求,低成本、小型化也成为“低慢小”目标探测的重要发展方向。

      其中,光学探测作为被动探测手段,利用其全天时、可视化、高精度、强抗扰等特性,在未来以城市防护为核心的低空探测任务中,成为解决“低慢小”目标发现难、识别难等问题的关键一环,具有重要的意义和应用前景。同时,日益复杂的低空环境和无人机蜂群等先进技术的变革,对光学探测提出新的技术发展需求。一方面,需要光电探测融入防护体系中,通过空域、平台、频谱、信息感知全方位协同,发挥光学优势,提升体系效能;另一方面,要求光电探测解决大视场、高分辨探测难题,发展多目标跟踪定位能力,提升智能化识别性能,拓展偏振、多光谱等光学信息感知纬度,为解决低空探测难题提供有力支撑。

    • 当前,针对“低慢小”目标的处置主要分为软硬两种手段,软手段主要是电子干扰,硬手段主要有激光毁伤拦截、高功率微波、火力相关的动能武器等,针对城市等环境下的应用,安全有效、低附带损伤的处置是重要的发展方向。

    • 电子干扰技术是当前最为主要的处置技术手段,主要是通过压制干扰技术阻断无人机等“低慢小”目标的数据链路,致使目标返航或者迫降;或者通过虚拟卫星导航系统诱骗无人机,实现对其的劫持控制。当前电子干扰的难点在于:无人机遥控遥测链路抗截获和抗干扰能力不断提升,非法用频无人机的有效干扰、高效干扰和灵巧接管等技术是主要的发展方向。

      在压制干扰方面,无人机遥控遥测链路向扩频高跳速方向发展,开展对最优化的干扰资源分配方法的多目标信号生成技术研究,生成与遥控无线电链路特征高度自相关的更多、更灵活、更匹配的信号样式是扩频高跳速无人机遥控链路干扰的技术难点。在灵巧接管方面,通过虚拟卫星导航系统诱骗无人机并通过卫星导航数据的控制实现对无人机的劫持控制,难点在于如何结合无人机信息,建立准确的计算模型,实现实时的虚拟卫星导航。

    • 定向能毁伤是区别于传统动能武器的硬毁伤技术,包括激光毁伤、微波(射频)毁伤等。激光毁伤主要是对目标的机体进行毁伤,高功率微波毁伤是对威胁目标的电子系统进行干扰、损伤。近年来,随着一些关键技术的发展和突破,激光、高功率微波等逐渐从“新概念”走向实际应用,日益成为最为重要的电磁打击手段。

      激光毁伤系统的应用主要取决于三个因素:1)高能激光器,大功率、紧凑化是高能激光器永恒的发展方向;2)光束定向器,用户捕获、跟踪、瞄准(acquisi-tion, tracking, pointing, ATP)打击目标,在复杂环境下,如何快速发现目标并进行跟踪、瞄准是激光武器能进行工作的关键技术;3)基于大气传输效果的决策,如何根据大气参数、目标信息、设备参数等进行决策,决定了毁伤的效果。

      同激光毁伤相比,高功率微波武器具有杀伤范围广、攻击速度快、受环境影响小、效费比高等特点,可以有效应对饱和攻击;还可以全天候使用。高功率微波武器系统的应用主要取决于两个方面:1)高功率微波源,根据工作频段、产生机理以及功能应用的不同,高功率微波器件正处于快速研发的过程中。随着高功率微波技术的快速发展,高功率微波源的输出功率量级已显著增加,且尺寸也大大缩减,就单个高功率微波源器件而言,提高峰值输出功率、增加微波脉宽和实现更高频率运行始终是其发展的主要趋势。2)高功率微波天线,天线作为辐射高功率微波能量的“窗口”,在高功率微波馈源的波束赋形技术、天线的小型化、功率容量、效率、波束扫描等面临着诸多的挑战。

      综上,“低慢小”目标的处置需要多种手段联合防御,从空间、时间、形式层面进行远近分级、“点面”协同、“软硬”结合,在不同战场环境和不同威胁空域内,逐步瓦解“低慢小”目标带来的威胁。

    • 随着无人机技术的发展,以无人机为代表的“低慢小”目标防控是未来低空防御的重点发展方向和技术难点。构建敏捷指控、复合探测和多元处置为一体的防控体系是“低慢小”目标防御的共识。但是由于“低慢小”目标的特殊性、使用场景的多变和复杂性等,当前的技术手段无法从根本上彻底解决探测、处置的问题,因此,“低慢小”防控体系建设应在建设和使用中逐步完善,通过常态化的测试与使用,对相关经验进行总结,反馈到现有的“低慢小”防控体系中,不断进行优化与迭代,才有可能解决“低慢小”目标防护的问题。

Reference (20)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return