Volume 44 Issue 6
Aug.  2015
Turn off MathJax
Article Contents

Fang Yanchao, Wang Jianjun, Yu Guoquan, Cui Shuang, Li Yan. Laser signal generating method in internal field simulation experiment[J]. Infrared and Laser Engineering, 2015, 44(6): 1766-1772.
Citation: Fang Yanchao, Wang Jianjun, Yu Guoquan, Cui Shuang, Li Yan. Laser signal generating method in internal field simulation experiment[J]. Infrared and Laser Engineering, 2015, 44(6): 1766-1772.

Laser signal generating method in internal field simulation experiment

  • Received Date: 2014-10-05
  • Rev Recd Date: 2014-11-15
  • Publish Date: 2015-06-25
  • In order to make appraisal of the combat capability for laser-guided weapons in internal field, the laser signal simulation system was designed. First of all, for the composition of the laser signal simulation system and its working principle, the internal field simulation and equivalent methods of laser signal divergence angle, energy and direction were analyzed respectively, and the dynamic adjustment of the three devices was calibrated. The experiment results show that: The relative error of dynamic simulation of the laser signal spot diameter is less than 2.5%, the dynamic adjustment error of energy attenuation is less than 0.2 dB, dynamic adjustment error of azimuth and elevation are respectively less than 1.3 mrad, 0.6 mrad. The simulation system has been applied in the photoelectric countermeasure simulation project, and this simulation system can provide high degree of laser signal simulation for laser-guided weapons qualification test.
  • [1]
    [2] Fan Shipeng, Lin Defu, Lu Yulong, et al. Design and achievement of hardware-in-the-loop simulation system for guided shell based on laser semi-active seeker[J]. Infrared and Laser Engineering, 2014, 43(2): 395-396. (in Chinese) 范世鹏, 林德福, 路宇龙, 等. 激光制导武器半实物仿真系统的设计与实现[J]. 红外与激光工程, 2014, 43(2): 395-396.
    [3]
    [4] Sun Shaojun, Zhang Jiyong. Overview of simulation test system used for photoelectronic countermeasure[J]. Infrared and Laser Engineering, 2003, 32(6): 551-552. (in Chinese) 孙少军, 张继勇. 光电对抗仿真试验系统综述[J]. 红外与激光工程, 2003, 32(6): 551-552.
    [5]
    [6] Yang Zaifu, Qian Huanwen, Gao Guanghuang. Development of laser warning technology[J]. Laser Technology, 2004, 28(1): 99-101. (in Chinese) 杨在富, 钱焕文, 高光煌. 激光告警技术发展现状[J]. 激光技术, 2004, 28(1): 99-101.
    [7]
    [8] Deng Fanglin, Liu Zhiguo, Wang Shicheng. Design and development of the hardware-in-the-loop simulation system for laser seeker[J]. Journal of System Simulation, 2004, 16(2): 255-257. (in Chinese) 邓方林, 刘志国, 王仕成. 激光导引头半实物仿真系统的设计与研制[J]. 系统仿真学报, 2004, 16(2): 255-257.
    [9] Wang Jianjun, Zhang Peilu, Li Yan, et al. Design of indoor simulation test system for laser warning[J]. Optics and Precision Engineering, 2010, 18(9): 1937-1938. (in Chinese) 王建军, 张沛露, 李岩, 等. 激光告警内场仿真试验系统的设计[J]. 光学 精密工程, 2010, 18(9): 1937-1938.
    [10]
    [11] Li Ming, Ji Yong, Jia Hongguang, et al. Hardware-in-closed-loop simulation system for aircraft based on rapid simulation prototype[J]. Optics and Precision Engineering, 2008, 16(10): 1949-1955. (in Chinese) 厉明, 纪勇, 贾宏光, 等. 基于快速仿真原型的飞行器半物理仿真系统[J].光学 精密工程, 2008, 16(10): 1949-1955.
    [12]
    [13] Jia Yong, Gao Yunguo. A switch zoom design for reflective laser beam expander[J]. Acta Optica Sinica, 2012, 23(10): 1-8. (in Chinese) 贾勇, 高云国. 反射式激光扩束器的切换变倍技术[J]. 光学学报, 2012, 23(10): 1-8.
    [14]
    [15] Zhao Jianke, Li Xia, Xu Liang, et al. Laser beam wave-front error reduction accuracy analysis [J]. Infrared and Laser Engineering, 2013, 42(1): 80-81. (in Chinese) 赵建科, 李霞, 徐亮, 等. 激光缩束系统波前畸变精度分析[J]. 红外与激光工程, 2013, 42(1): 80-81.
    [16]
    [17]
    [18] Zhang Zhen, Zhou Menglian, Zhang Jianmin, et al. Shadows of laser spots in CCD and their mechanism[J]. Optics and Precision Engineering, 2013, 21(5): 1366-1368. (in Chinese) 张震, 周孟莲, 张检民, 等. CCD中的激光光斑阴影现象及机理[J]. 光学 精密工程, 2013, 21(5): 1366-1368.
    [19] Zhang Tongxin. Research on support vector machine based on quantum particle swarms optimization and its Application[D]. Hangzhou: Zhejiang University, 2013. (in Chinese) 张同心. 基于量子粒子群的支持向量机算法的研究与应用[D]. 杭州: 浙江大学, 2013.
    [20]
    [21] Li Xiaojing, An Zhiyong, Xiao Zuojiang, et al. Study on measuring method of the laser divergence angle based on CCD second imagery[J]. Journal of Changchun University of Science and Technology(Natural Science Edition), 2010, 33(4): 50-51. (in Chinese) 李晓晶, 安志勇, 肖作江, 等. 基于CCD 二次成像法的激光束散角测量方法研究[J]. 长春理工大学学报(自然科学版), 2010, 33(4): 50-51.
    [22]
    [23]
    [24] Huang Jipeng, Wang Yanjie, Sun Honghai, et al. Preciseposition measuring system for laser spots [J]. Optics and Precision Engineering, 2013, 21(4): 842-845. (in Chinese) 黄继鹏, 王延杰, 孙宏海, 等. 激光光斑位置精确测量系统[J]. 光学 精密工程, 2013, 21(4): 842-845.
    [25]
    [26] Shan Xiaonan, Liu Yun, Cao Junsheng. 808 nm kW output high-efficiency diode laser sources[J]. Optics and Precision Engineering, 2011, 19(2): 455-456. (in Chinese) 单肖楠, 刘云, 曹军胜. 808 nm千瓦级高效大功率半导体激光光源[J]. 光学 精密工程, 2011, 19(2): 455-456.
    [27] Huang Chong, Chen Haiqing, Liao Zhaoshu, et al. Lightattenuation coefficient of polarization attenuator at high attenuation level[J]. Acta Physica Sinica, 2010, 59(3): 1756-1761. (in Chinese) 黄翀, 陈海清, 廖兆署, 等. 高量级光衰减时对线偏振片组衰光系数的研究[J]. 物理学报, 2010, 59(3): 1756-1761.
    [28]
    [29] Yu Guoquan, Guo Jin, Li Yan, et al. Precision analysis of indoor simulation system for laser angle deception jam[J].Optics and Precision Engineering, 2013, 21(10): 2610-2613. (in Chinese) 于国权, 郭劲, 李岩, 等. 激光角度欺骗干扰内场仿真系统精度分析[J]. 光学 精密工程, 2013, 21(10): 2610-2613.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(394) PDF downloads(158) Cited by()

Related
Proportional views

Laser signal generating method in internal field simulation experiment

  • 1. Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China

Abstract: In order to make appraisal of the combat capability for laser-guided weapons in internal field, the laser signal simulation system was designed. First of all, for the composition of the laser signal simulation system and its working principle, the internal field simulation and equivalent methods of laser signal divergence angle, energy and direction were analyzed respectively, and the dynamic adjustment of the three devices was calibrated. The experiment results show that: The relative error of dynamic simulation of the laser signal spot diameter is less than 2.5%, the dynamic adjustment error of energy attenuation is less than 0.2 dB, dynamic adjustment error of azimuth and elevation are respectively less than 1.3 mrad, 0.6 mrad. The simulation system has been applied in the photoelectric countermeasure simulation project, and this simulation system can provide high degree of laser signal simulation for laser-guided weapons qualification test.

Reference (29)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return