Volume 44 Issue 8
Sep.  2015
Turn off MathJax
Article Contents

Zhou Hui, Li Song, Wang Liangxun, Zheng Guoxing. Influence of noise on range error for satellite laser altimeter[J]. Infrared and Laser Engineering, 2015, 44(8): 2256-2261.
Citation: Zhou Hui, Li Song, Wang Liangxun, Zheng Guoxing. Influence of noise on range error for satellite laser altimeter[J]. Infrared and Laser Engineering, 2015, 44(8): 2256-2261.

Influence of noise on range error for satellite laser altimeter

  • Received Date: 2014-12-05
  • Rev Recd Date: 2015-01-08
  • Publish Date: 2015-08-25
  • Noise is an important factor of affecting range error for satellite laser altimeter with recording waveform. According to the distribution characteristic of received pulse signal and noise, the theoretical expression form about variance of time-centroid for received pulse signal was deduced. Thereby, the impact model of noise on range error was built-up. Base on the principle of minimizing range error, an optimization design method for low-pass filter was put forward. In terms of basic measurement parameters for Geoscience Laser Altimeter System(GLAS), the distribution regularities of range error and RMS pulse width for low-pass filter were simulated. As for linear target of geometrical parameters within 40 slope angle and 15 m roughness, the extent of range error is 0.28-32.49 cm. Correspondingly, the scope of RMS pulse width for low-pass filter is 1.4-57.4 ns. Aimed at targets with scope of 1 slope angle, the computed value of low-pass filter for GLAS is 2.2 ns, which is close approximate to 2 ns as published practically value. Meanwhile, on basis of optimizational results for low-pass filter, the range errors decrease significantly. The maximum of range error is decreased to 10.93 cm and corresponding reduction level gets 3 times. All the results show that impact model of noise on range error and optimization design method for low-pass filter is correct. They provide practical application values for hardware design and performance assessment of satellite laser altimeter.
  • [1] Brenner A C, Zwally H J, Bentley C R, et al. The algorithm theoretical basis document for derivation of range and range distributions from laser pulse waveform analysis for surface elevations, roughness, slope, and vegetation heights [R]. USA: NASA Goddard Space Flight Center, 2012.
    [2]
    [3]
    [4] Chen Shuhang, Li Zile, Chen Mengzhu, et al. Influence of atmospheric multiple scattering effects on the range bias for satellite laser altimeter [J]. Infrared and Laser Engineering, 2012, 41(9): 2522-2526. (in Chinese)陈舒杭, 李子乐, 陈梦竹, 等. 大气多次散射效应对星载激光测高仪测距偏差值的影响[J]. 红外与激光工程, 2012, 41(9): 2522-2526.
    [5]
    [6] Ma Yue, Li Song, Zhou Hui, et al. Effect of system parameters on ranging and pulse width in ocean satellite laser altimeter system [J]. Optics and Precision Engineering, 2013, 21(3): 813-820. (in Chinese)马跃, 李松, 周辉, 等. 系统参数对激光测高仪海洋测距和回波脉宽影响[J]. 光学 精密工程, 2013, 21(3): 813-820.
    [7]
    [8] Zhou Hui, Li Song, Zheng Guoxing, et al. An optimizational design method for receiver filter bandwidth of satellite laser altimeter[J]. Chinese Journal of Lasers, 2012, 39(9): 136-140. (in Chinese)周辉, 李松, 郑国兴, 等. 星载激光测高仪系统接收滤波器的带宽优化设计[J]. 中国激光, 2012, 39(9): 136-140.
    [9] Garener C S. Ranging performance of satellite laser altimeters [J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30 (5): 1061-1071.
    [10]
    [11] Harding D J, Bufton J L, Frawley J J. Satellite laser altimetry of terrestrial topography: vertical accuracy as a function of surface slope, roughness, and cloud cover[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32 (2): 329-339.
    [12]
    [13] Santovitoa M R, Tommasib L, Sgarzic G, et al. A laser altimeter for BepiColombo mission: Instrument design and performance model [J]. Planetary and Space Science, 2006, 54(7): 645-660.
    [14]
    [15]
    [16] Li Song, Zhou Hui, Shi Yan, et al. Theoretical model for return signal of laser altimeter[J]. Optics and Precision Engineering, 2007, 15(1): 33-39. (in Chinese)李松, 周辉, 石岩, 等. 激光测高仪的回波信号理论模型[J]. 光学 精密工程, 2007, 15(1): 33-39.
    [17]
    [18] Abshire J B, Sun X L, Afzal R S. Mars orbiter laser altimeter: receiver model and performance analysis[J]. Applied Optics, 2000, 39(15): 2449-2460.
    [19] Sun X L, Abshire J B, McGarry J F, et al. Space lidar developed at the NASA goddard space flight center-the first 20 years[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3): 1660-1675.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(377) PDF downloads(423) Cited by()

Related
Proportional views

Influence of noise on range error for satellite laser altimeter

  • 1. School of Electronic Information,Wuhan University,Wuhan 430072,China;
  • 2. Geospatial Information Collaborative Innovation Center,Wuhan 430079,China

Abstract: Noise is an important factor of affecting range error for satellite laser altimeter with recording waveform. According to the distribution characteristic of received pulse signal and noise, the theoretical expression form about variance of time-centroid for received pulse signal was deduced. Thereby, the impact model of noise on range error was built-up. Base on the principle of minimizing range error, an optimization design method for low-pass filter was put forward. In terms of basic measurement parameters for Geoscience Laser Altimeter System(GLAS), the distribution regularities of range error and RMS pulse width for low-pass filter were simulated. As for linear target of geometrical parameters within 40 slope angle and 15 m roughness, the extent of range error is 0.28-32.49 cm. Correspondingly, the scope of RMS pulse width for low-pass filter is 1.4-57.4 ns. Aimed at targets with scope of 1 slope angle, the computed value of low-pass filter for GLAS is 2.2 ns, which is close approximate to 2 ns as published practically value. Meanwhile, on basis of optimizational results for low-pass filter, the range errors decrease significantly. The maximum of range error is decreased to 10.93 cm and corresponding reduction level gets 3 times. All the results show that impact model of noise on range error and optimization design method for low-pass filter is correct. They provide practical application values for hardware design and performance assessment of satellite laser altimeter.

Reference (19)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return