Volume 42 Issue 11
Feb.  2014
Turn off MathJax
Article Contents

Shi Qiang, Sang Shengbo, Zhang Wendong, Li Pengwei, Hu Jie, Li Gang. Research development of nano optical waveguide smoothing technology[J]. Infrared and Laser Engineering, 2013, 42(11): 3040-3046.
Citation: Shi Qiang, Sang Shengbo, Zhang Wendong, Li Pengwei, Hu Jie, Li Gang. Research development of nano optical waveguide smoothing technology[J]. Infrared and Laser Engineering, 2013, 42(11): 3040-3046.

Research development of nano optical waveguide smoothing technology

  • Received Date: 2013-03-10
  • Rev Recd Date: 2013-04-25
  • Publish Date: 2013-11-25
  • With the development of semiconductor industry,the critical dimension of integrated optoelectronic devices are becoming smaller and smaller, the technology of smoothing nano optical waveguide surface are facing new challengs. Reducing the nano optical waveguide surface roughness, manufacturing ultra-low loss nano optical waveguide and achieving the efficient optical interconnection and inside coupling between chips are the key to optoelectronic devices integration and especially the development of high sensitive micro gyro, biochemical sensors, optical communication devices and so on. In this review, the relationship between surface roughness and scattering loss were analyzed while the emphasis was the technological approaches of smoothing nano optical waveguide surface, including the research status and the latest achievements of thermal oxidation method, hydrogen annealing method and laser reformation method. Additionally, the technical difficulties and development prospects of various technologies were summarized together with their application prospects in the fields of MEMS, large-scale photonic integrated circuits.
  • [1]
    [2] Lapisa M, Stemme G, Niklaus F, et al. Wafer-Level Heterogeneous Integration for MOEMS, MEMS, and NEMS[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(3): 629-644.
    [3] Daoxin Dai, Jared Bauters, John E Bowers. Passive technologies for future large-scale photonicintegrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction[J/OL]. Light: Science Applications, 2012-03-29.
    [4]
    [5]
    [6] Alberto Politi, Cryan Martin J, Rarity John G, et al. Silica-on-silicon waveguide quantum circuits[J]. Science, 2008, 320(5876): 646-649.
    [7]
    [8] Chen Xia, Li Chao, Tsang Hon K. Device engineering for silicon photonics[J]. NPG Asia Materials, 2011, 3(1): 34-40.
    [9] Xin Yan, Ma Chunsheng, Zheng Chuantao, et al. Analysis of electro-optic switches with series-coupled multiple microring resonators[J]. Optoelectronics Letters, 2009, 5(2):81.
    [10]
    [11] Almeida V R, Barrios C A, Panepucci R R, et al. All-optical control of light on a silicon chip[J]. Nature, 2004, 431(10): 1081-1083.
    [12]
    [13]
    [14] Ikuma Y, Shoji Y, Kuwahara M, et al. Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film[J]. Electronics Letters, 2010, 46(21):1460-1461.
    [15] Inamoto Makoto, Maruyama Takeo, Iiyama Koichi. Mach-Zehnder interferometric optical switch with MEMS phase shifter[J]. Optical and Quantum Electronics, 2009, 41(8):599-604.
    [16]
    [17] Arlett J L, Myers E B, Roukes M L. Comparative advantages of mechanical biosensors[J]. Nature Nanotechnology, 2011, 6(4): 203-215
    [18]
    [19]
    [20] Martin Baaske, Frank Vollmer. Optical resonator biosensors:molecular diagnostic and nanoparticle detection on an integrated platform[J]. Chemphyschem, 2012, 13(2): 427-436.
    [21] Wang Shutao, Cui Yanyan. Novel optical fiber gas sensing system based on spectrum absorption and fluorescence detection technology[J]. Infrared and Laser Engineering, 2012, 41(8): 2141-2146. (in Chinese)王书涛, 崔彦彦. 基于光谱吸收和荧光检测技术的新型光纤气体传感系统[J]. 红外与激光工程, 201, 41(8): 2141-2146.
    [22]
    [23] Carlos Angulo Barrios. Optical slot-waveguide based biochemical sensors[J]. Sensors, 2009, 9(6): 4751-4765.
    [24]
    [25] Yan Shubin, Zhao Min, Liu Zheng, et al. All-solid integrated optical waveguide Gyro based on chip[J]. Infrared and Laser Engineering, 2011, 40(5): 921-925. (in Chinese)闫树斌, 赵敏, 刘正, 等. 芯片级全固化集成光波导陀螺[J]. 红外与激光工程, 2011, 40(5): 921-925.
    [26]
    [27]
    [28] Yu Huaiyong, Zhang Chunxi, Feng Lishuang, et al. Rayleigh backscatter noise in integrated optical resonance gyro[J]. Optik, 2012, 123(15): 1364-1369.
    [29] Qin Shengjie, Zhang Fuxue. A combination of silicon micro-gyroscope that application rotary missile attitude control System[J]. Physics Procedia, 2011, 22: 487-492.
    [30]
    [31] Said Emre Alper, Kivanc Azgin, Tayfun Akin. A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure[J]. Sensors and Actuators A: Physical, 2007, 135(1): 34-42.
    [32]
    [33]
    [34] Vlasov Yurii A, McNab Sharee J. Losses in single-mode silicon-on-insulator strip waveguides and bends[J]. Optics Express, 2004, 12(8): 1622-1631.
    [35] Shankar Kumar Selvaraja, Wim Bogaerts, Dries Van Thourhout. Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement[J]. Optics Communications, 2011, 284(8): 2141-2144.
    [36]
    [37]
    [38] Zhang Haiming, Ma Chunsheng, Qin Zhenkun, et al. Reduction of sidewall roughness, insertion loss and crosstalk of polymer arrayed waveguide grating using vapor-redissolution technique[J]. Thin Solid Films, 2007, 515(18):7313-7317.
    [39] Grillot F, Vivien L, Cassan E, et al. In fluence of waveguide geometry on scattering loss effects in submicron strip silicon-on-insulator waveguides[J]. IET Optoelectron, 2008, 2(1): 1-5.
    [40]
    [41]
    [42] Yoshie Tomoyuki, Tang Lingling, Su Shuyu. Optical microcavity: sensing down to single molecules and atoms[J]. Sensors, 2011, 11(2): 1972-1991.
    [43] Vahala Kerry J. Optical microcavities[J]. Nature, 2003, 424: 839-846.
    [44]
    [45] Xu K, Chen Y M, Li C, et al. An ultracompact OSNR monitor based on an integrated silicon microdisk resonator[J]. IEEE Photonics Journal, 2012, 4(5): 1365-1371.
    [46]
    [47] Li Q, Eftekhar A A, Xia Z X, et al. Azimuthal-order variations of surface-roughness-induced mode splitting and scattering loss in high-Q microdisk resonators[J]. Optics Letters, 2012, 37(9): 1586-1588.
    [48]
    [49]
    [50] Wim Bogaerts, Peter De Heyn, Thomas Van Vaerenbergh, et al. Silicon microring resonators[J]. Laser Photonics Reviews, 2012, 6(1): 47-73.
    [51] Xu Lianyu, Sun Yue, Wang Daliang, et al. Method of coupled ring resonator's transmission curve detection by using Mach-Zehnder interferometer[J]. Infrared and Laser Engineering, 2011, 40(5): 949-952. (in Chinese)徐连宇, 孙月, 王大量, 等. 利用Mach-Zehnder干涉仪检测环形谐振腔传输曲线的方法[J]. 红外与激光工程, 2011, 40(5): 949-952.
    [52]
    [53] Ferrera M, Park Y, Razzari L, et al. On-chip CMOS-compatible all-optical integrator[J]. Nature Communications, 2010, 1: 29.
    [54]
    [55]
    [56] Massoud Hisham Z. The onset of the thermal oxidation of silicon from room temperature to 1000C[J]. Microelectronic Engineering, 1995, 28(1-4): 109-116.
    [57]
    [58] Takahashi Jun-ichi, Tsuchizawa Tai, Watanabe Toshifumi, et al. Oxidation-induced improvement in the sidewall morphology and cross-sectional profile of silicon wire waveguides[J]. Journal of Vacuum Science Technology B, 2004, 22(5): 2522-2525.
    [59] Hitoshi Habuka, Hitoshi Tsunoda, Masanori Mayusumi, et al. Roughness of silicon surface heated in hydrogen ambient[J]. Journal of the Electrochemical Society, 1995, 142(9): 3092-3098.
    [60]
    [61]
    [62] Shimizu R, Kuribayashi H, Hiruta R, et al. Nano-scale morphology and hydrogenation of Si surfaces in the early phase of hydrogen annealing[J]. Journal of Physics: Conference Series, 2008, 100: 012031.
    [63]
    [64] Howlader M M R, Selvaganapathy P R, Jamal Deen M. Nanobonding technology toward electronic, fluidic, and photonic systems integration[J]. Journal of Selceted Topics in Quantum Electronics, 2011, 17(3): 689-703.
    [65]
    [66] Hung Shihche, Liang Eihzhe, Lin Chingfuh. Silicon waveguide sidewall smoothing by KrF excimer laser reformation[J]. Journal of Lightwave Technology, 2009, 27(7): 887-892.
    [67] Noel Healy, Laura Lagonigro, Sparks Justin R, et al. Polycry stalline silicon optic al fibers with atomically smooth surfaces[J]. Optics Letters, 2011, 36(13): 2480-2482.
    [68]
    [69] Gao F, Wang Y, Cao G, et al. Reduction of sidewall roughness in silicon-on-insulator rib waveguides[J]. Applied Surface Science, 2006, 252(14): 5071-5075.
    [70]
    [71]
    [72] Sparacin Daniel K, Spector Steven J, Kimerling Lionel C. Silicon waveguide sidewall smoothing by wet chemical oxidation[J]. Journal of Lightwave Technology, 2005, 23(8): 2455-2461.
    [73] Shi Zujun, Shao Shiqian, Wang Yi. Improved the surface roughness of silicon nanophotonic devices by thermal oxidation method[J]. Journal of Physics: Conference Series, 2011, 276: 012087.
    [74]
    [75]
    [76] Chen Yuanyuan, Xia Jinsong, Fan Zhongchao, et al. Method of thermal oxidation for minimizing surface roughness of Dry etched silicon waveguide[J]. Chinese Journal of Semiconductors, 2004, 25(11): 1544-1548. (in Chinese)陈媛媛, 夏金松, 樊中朝, 等. 热氧化方法改善硅干法刻蚀波导的表面粗糙度[J]. 半导体学报, 2004, 25(11): 1544-1548.
    [77]
    [78] Jaime Cardenas, Poitras Carl B, Robinson Jacob T, et al. Low loss etchless silicon photonic waveguides[J]. Optics Express, 2009, 17(6): 4752-4757.
    [79] Lee MingChang, Wu Ming C. Thermal annealing in hydrogen for 3-D profile transformation on silicon-on-insulator and sidewall roughness reduction[J]. Journal of Microelectromechanical Systems, 2006, 15(2): 338-343.
    [80]
    [81] Lee Mingchang, Wu Mingchang. 3D silicon transformation using hydrogen annealing[C]//Solid-State Sensor, Actuator, Microsystem Workshop, 2004.
    [82]
    [83]
    [84] Reiko Hiruta, Hitoshi Kuribayashi, Ryosuke Shimizu, et al. Flattening of micro-structured Si surfaces by hydrogen annealing[J]. Applied Surface Science, 2006, 252(15): 5279-5283.
    [85]
    [86] Li Bingsheng, Zhang Chonghong, Zhou Lihong, et al. Annealing effects in silicon implanted with helium[J]. Nuclear Instruments and Methods in Physics Research B, 2008, 266(24): 5112-5115.
    [87]
    [88] Liang E Z, Hung S C, Hsieh P, et al. Effective energy densities in KrF excimer laser reformation as a sidewall smoothing technique[J]. Journal of Vacuum Science Technology B, 2008, 26(1):110-116.
    [89] Xia Qiangfei, Patrick F Murphy, Gao He, et al. Ultrafast and selective reduction of sidewall roughness in silicon waveguides using self-perfection by liquefaction[J]. Nanotechnology, 2009, 20(34): 345302.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(479) PDF downloads(153) Cited by()

Related
Proportional views

Research development of nano optical waveguide smoothing technology

  • 1. MicroNano System Research Center,Taiyuan University of Technology,Taiyuan 030024,China;
  • 2. Key Laboratory of Advanced Transducers and Intelligent Control System,Shanxi Province and Ministry of Education,Taiyuan University of Technology,Taiyuan 030024,China

Abstract: With the development of semiconductor industry,the critical dimension of integrated optoelectronic devices are becoming smaller and smaller, the technology of smoothing nano optical waveguide surface are facing new challengs. Reducing the nano optical waveguide surface roughness, manufacturing ultra-low loss nano optical waveguide and achieving the efficient optical interconnection and inside coupling between chips are the key to optoelectronic devices integration and especially the development of high sensitive micro gyro, biochemical sensors, optical communication devices and so on. In this review, the relationship between surface roughness and scattering loss were analyzed while the emphasis was the technological approaches of smoothing nano optical waveguide surface, including the research status and the latest achievements of thermal oxidation method, hydrogen annealing method and laser reformation method. Additionally, the technical difficulties and development prospects of various technologies were summarized together with their application prospects in the fields of MEMS, large-scale photonic integrated circuits.

Reference (89)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return