
Calculation of liquid crystal wave鄄front generation atmospheric
turbulence simulator based on GPU

Kong Yue1, Xu Xiping1, Ni Xiaolong1,2

(1. School of Opto鄄Electronic Engineering,Changchun University of Science and Technology, Changchun 130022, China;

2. Fundammontal Science on Space鄄Ground Laser Communication Technology Laboratory, Changchun University

of Science and Technology, Changchun 130022, China)

Abstract: In order to achieve the purpose of real鄄time atmosphere turbulence simulation by used liquid
crystal spatial light modulator, A new computing method of liquid crystal atmospheric turbulence
simulator real鄄time wave鄄front generation based on GPU has been proposed. According to the
characteristics of liquid crystal turbulence simulator, which is high resolution, high precision, The
Compute Unified Device Architecture was discussed in this paper. Furthermore, a wave鄄front generation
model based on GPU was established with parallel optimization and share memory optimization. Finally,
the experimental results by used CPU and GPU wave generation was given. The result shows that: the
consumed time by proposed method is less than 2 ms for a Zernike polynomial with 231 wave鄄front
values in resolution of 256×256, which is two orders of magnitude less than that of CPU, fully meets
the real鄄time wave鄄front generation requirements.
Key words: graph processing unit; compute unified device architecture; liquid crystal;

wave鄄front calculation
CLC number: TP332.3 Document code: A Article ID: 1007-2276(2014)09-3061-05

基于 GPU 的液晶大气湍流模拟器的波面生成计算

孔 悦 1，徐熙平 1，倪小龙 1,2

(1. 长春理工大学 光电工程学院，吉林 长春 130022；
2. 长春理工大学 空地激光通信技术国防重点学科实验室，吉林 长春 130022)

摘 要： 提出了一种基于 GPU 的液晶大气湍流模拟器实时波面生成的计算方法，为了让液晶空间光
调制器进行大气湍流类比。 依据液晶湍流模拟器高分辨率、高精度的特性讨论 CUDA 的算法。 此外，
建立一种基于 GPU 波面生成的模型并进一步对其优化。 最后给出使用 CPU 和 GPU 后的结果并进行
类比。结果表明：采用 231 项 Zernike 系数生成分辨率为 256×256 的波前所需时间少于 2 ms，与传统的
采用 CPU 生成的方法相比速度提升两个量级，满足实时波面生成的要求。
关键词： 图形处理器； CUDA； 液晶； 湍流计算

收稿日期：2014-01-05； 修订日期：2014-02-10

作者简介：孔悦(1988-)，女 ，硕士生 ，主要从事精密测控技术与仪器方面的研究 。 Email:yuekong705@163.com

导师简介：徐熙平 (1969-)，男，教授 ，博士生导师，主要从事光电检测技术与质量控制方面的研究。 Email:xxp@cust.edu.cn

第 43 卷第 9 期 红外与激光工程 2014 年 9 月

Vol.43 No.9 Infrared and Laser Engineering Sep.2014

红外与激光工程 第 43 卷

0 Introduction

Atmospheric turbulence plays an important role in
laser′ s transmission. Light beam will occur random
fluctuation, cause the beam drift, beam expension, the
intensity fluctuation phenomenon, and poor beam
quality. Moreover, with the development of astronomical
imaging, laser communication, tracking and other high
technology, and the influence arouses people more and
more attention. However, only by means of field
measurements, repeated experiments and so on, not only
labourpower, material resources, financial resources are
wasted by this way, but also it is very difficult to reflect
turbulent changes in all kinds of weather conditions[1-3]

completely and accurately. Therefore, We need a
turbulence simulation device which can simulate
atmosphere turbulence. At present, there are many
methods of simulating atmospheric turbulence, such as
atmospheric turbulence simulator based on liquid crystal,
random phase plate and so on[4].

Liquid crystal device has the characteristics of
high pixel density, high precision, phase modulation
phase programming real鄄time control, especially it is
suitable for high precision controllable turbulence
simulation. For the liquid crystal light modulator of
common 256 ×256 pixels, it requires 65 536 control
signals, and it is difficult to achieve the real鄄time
wave鄄front generation by means of traditional CPU
calculation. This method makes wave鄄front repeatability
of the system higher, and larger gap between the actual
turbulence [5]. However, with the rapid development of
GPU technology, current GPU possesses strong parallel
operation capability and the floating鄄point operation
capability. Besides, wave鄄front generation calculation is
a typical large鄄quantity repeated calculation and it is
suitable for the structure of GPU to make parallel
optimization [6]. In this paper, a new calculation of the
liquid crystal atmospheric turbulence simulator wave鄄
front generation based on GPU is presented. First,
select the top 231 Zernike model to calculate
turbulence and simulation turbulence experiment and

then better experimental results is obtained.

1 Turbulence wave鄄front generated by
Zernike modes

As mentioned in reference 7, Any wave鄄front
function φ (x , y) within the circular aperture can be
expanded in the form of Zernike polynomials[7].

φ(x,y)=∑
i=∞

i=1 ai·zi(x,y) (1)

Where ai is the i -th term Zernike mode coefficients,
zi is the first i Zernike mode. The foundation of
atmospheric turbulence simulation is to generate the
Zernike polynomial coefficients ai, so that we can
generate the wave鄄front obey the Kolmogorov
turbulence theory. Zernike polynomial coefficients can
be assumed to be zero mean Gaussian random
variable, the number of Zernike polynomials patterns p
is selected, assuming that A is the coefficient vector.

A=[a1,a2,… ,ap]T (2)
By Eq.(1) we can get

ai=(φ ,zi) (3)
By Eq.(3) and Kolmogorov turbulence theory, the

covariance matrix C of coefficient A can be obtained.
〈aiai〉=cij (4)

c=[cij] i=1,2,… ,p, j=1,2,… ,p (5)
Where D is the diameter of the telescope, r0 is the
atmospheric correlation length, r0 value reflects the
intensity of the turbulence in the case of D
determines, (D/r0)5/3 can be substituted into a specific
value to reflect the turbulent correlation strength.
Matrix C is the covariance matrix of coefficients A by
the covariance matrix C we can get that the each
Zernike modes isstatistically independent. To generate
random turbulence wave鄄front, it must be expressed as
a defined amount of a combination of random
variance, thus by using Karhumen鄄Loeve transform
and the singular value decomposition of the covariance
matrix C we can get.

C=VSVT (6)
Where S is a diagonal matrix. V is a unitary matrix,
also the expansion coefficients of the Karhumen鄄

3062

第 9 期

Loeve polynomials expansed by Zer nike polynomials.
Then we can get vector B with zero mean and
covariance matrix is S Gaussian random.

A=VB (7)
Where B is the coefficient of wave鄄front φ (x ,y)
expensed by Karhumen鄄Loeve polynomial, then zero
mean Gaussian random vectors A can be got. By Eq.(1),
atmospheric turbulence according to Kolmogorov
turbulence theory can be got [8-9]. The correspondence
relationship between Zernike coefficients and the
control voltage v of the liquid crystal spatial light
modulator is:

V=Ra (8)
Where V is the control voltage matrix with 65 536 rows,
a is the Zernike coefficient matrix with 231 rows, R
is the phase modulation value of each pixel matrix
corresponding to the control voltage with total of
65 536 rows and 231 rows.

2 GPU compute unified device
architecture

At present, Which adopts GPU as the main
framework is NVIDIA′ s CUDA (Compute Unified
Device Architecture). it is parallel computing
architecture, it makes GPU solve complex computing
problems. Generally,a typical CUDA system includes
CUDA instruction set architecture (ISA) and parallel
GPU computing engine[10].

CUDA makes a new algorithm to use hardware
resources provided by GPU, so it takes massive data
computing application a more powerful calculation
ability than CPU. Under the framework of CUDA, a
program is divided into two parts: Host and Device.

The Host program is running on the CPU, and
the Device program is running on GPU. Device
program called "kernel". Usually Host application data
will copy to the graphics card memory, when it is
ready, then the display chip executes the Device client
program. when compute finishes Host client program
will result from the graphics memory retrieval[11]. The
structure is shown in Fig.1.

Fig.1 GPU compute unified device architecture

Compared with CPU , GPU is more suitable for
intensive, parallel computing. In particular, GPU is very
suitable to deal with those that can be expressed as parallel
computing (parallel execution of the same program on
multiple data) problem, generating of turbulence wave鄄
front control signal is this calculation. so using GPU
for liquid crystal turbulence simulator computing can
greatly accelerate the speed of calculation.
2.1 GPU wave鄄front generating computing

According to Eq. (8) we learn that the key
operation of the wave鄄front generation is matrix
operation. Using GPU for the parallel operation
optimization is the key to improve the turbulence
generation rate. Under the framework of CUDA, GPU
minimum operation unit is Thread, numbers of Thread
can be composed of a Block. A Block Thread can
access the same shared memory, and can be used for
fast synchronized action. The number of Thread
belongs to each Block is limited. However, a number
of Block can form Grid. CUDA operation structure is
shown in Fig.2.

Fig.2 CUDA operation structure

Kong Yue et al: Calculation of liquid crystal
wave鄄front generation atmospheric turbulence simulator based on GPU 3063

红外与激光工程 第 43 卷

Each Block corr esponds to a physical operation
core, making full use of Block resources is the key
for parallel optimization. Turbulence generating
operation a total of 256×256 independent operation, in
order to achieve maximum parallel optimization, we
need to set the number of Thread as 256 ×256. The
GPU Geforce GTX 580 has 1 536 stream processors,
in order to take full advantage of GPU computing
resources, we should make the number Block system
more than 1 536. The number of thread in each block
should be a multiple of the size of warp. Warp is a
minimum single instruction multiple threads (SIMT)
unit. It makes 32 parallel threads as a group to create,
manage, schedule and execute threads. Then set the
Thread number on 32, and we can calculate the
required Block number 2 048.

Because the CPU and GPU communication
bandwidth is low, in order to reduce the communication
times between CPU and GPU, we need to stores Eq.(8)
in the shared memory for optimization. To sum up,
the driving voltage computing progam of each pixel is
shown below.
__global__ void Matrix_Mul (int*md, int*nd, int*pd,
int width)
{int bx, by, tx, ty;
bx = blockIdx.x;
by = blockIdx.y;
tx = threadIdx.x;
ty = threadIdx.y;
int mulResult=0;
for (int i = 0; i<gridDim.x; ++i){
__shared__ int d_m[TILE_WIDTH][TILE_WIDTH];
__shared__ int d_n[TILE_WIDTH][TILE_WIDTH];
d_m [ty] [tx] =* (md+(by*blockDim.y +ty)*width +i*
blockDim.x+tx);
d_n[ty] [tx] = *(nd + (i * blockDim.y + ty) * width
+ bx * blockDim.x + tx);
__syncthreads();
for (int j=0; j<blockDim.x; ++j){
mulResult += d_m[ty][j]*d_n[j][tx];}
__syncthreads();}

pd [(by*blockDim.y+ty)*width+bx*blockDim.x+tx]=
mulResult;}
2.2 Desgin of turbulence simulation software

The turbulence generation also needs to add the
CUDA computing program. cu file to the turbulence
simulation MFC program. The flowchat is shown in Fig. 3.

Fig.3 Turbulence simulation flowchart

When the program ru n s, first it needs to enter
the horizontal wind speed, vertical wind speed, receive
port diameter, wavelength, wave height, ground
elevation, transmission distance, transmission link
zenith angle and other parameters, then calculate the
value of (D/r0)5/3. After that, bring them into a
Zernike polynomial to get the Zernike coefficient.
Finally, the control voltage of liquid turbulence
simulator is generated by GPU.

3 Experiments and results

Liquid crystal spatial light modulator uses the
HSP256 -635 of BNS company. It has 256 pixels ×
256 pixels. GPU using the Geforce GTX680 chip of
NVIDIA company, which has 1 536 stream processors,
the core frequency is 1 006 Hz, memory frequency is
6 008 Hz. CPU uses the i7 -3930k processor of Intel
company, the core frequency 3.2 GHz, 16 G system
memory. Liquid crystal turbulence simulator test
experimental light path is shown in Fig.4.

Fig.4 Experimental light

3064

第 9 期

He-Ne laser generates 633 nm laser beam, first
through the filter to make the beam intensity
adjustment as the sensor′ s range. And then through
the linear film polarizer, the beam adjustment for
single direction of linearly polarized light, so that the
liquid crystal spatial light modulator can be used.
Then the beam expander expanse the beam to match
the L -C SLM. The LC -SLM generates turbulence
wave -front. Finally, through the beam expander, the
beam matches the diameter of the sensor to real鄄time
display, we can see the turbulence wave鄄front
generated by the simulator. During the experiment,
using the CPU and the GPU to generate wave鄄front
distortion by the same Zernike coefficients, the
simulation results is shown in Fig.5, the r0 here is 5

cm, the C
2

n is 35×10-17 and the Greenwood frequency
fg is 6.48.

Fig.5 Contrast diagram of wave鄄front generated by CPU and GPU

According to Fig.5, we know that using CPU
and GPU can generate the same wave鄄front. While
using GPU to generates distortion wave鄄front needs
2.3 ms, which is 213 ms using CPU. Wave鄄front
generate CPU the same time required for 215 ms. So
using GPU to generate distortion wave鄄front can
decrease time by two orders of magnitude less than
CPU. It fully meets the 10 ms requirements for real鄄
time simulation of atmospheric turbulence.

4 Conclusion

In this paper, a new calculation of the liquid crystal
atmospheric turbulence simulator wave鄄front generation
based on GPU is presented. According to experiments
and analysis, by using GPU compared with the
traditional CPU in the same precision, the GPU requires
for 2.3ms, two orders of magnitude less than CPU. This

result greatly increases the wave鄄front generation
velocity of the system. This method meets the time
requirements of real鄄time wave鄄front generation
computational.

References:

[1] Chen Chunyi, Yang Huamin, J iang Huilin, et al. Research

progress of mitigation technologies of turbulence effects in

atmospheric optical communication[J]. Acta Armamentar II,

2009, 30(6): 779-788. (in Chinese)

[2] Shen Yong, Liu Jianguo, Zeng Zongyong, et al. Performance

testing of atmospheric turbulence simulator [J]. Journal of

Atmospheric and Environmental Optics, 2011, 6(3): 231-234.

(in Chinese)

[3] Li Dayu, Hu Lifa, Cao Zhaoliang, et al. Liquid crystal

atmosphere turbulence simulator [J]. Acta Photonica Sinica,

2006, 35(12): 1960-1963. (in Chinese)

[4] Gan Xinji, Guo Jin, Fu Youyu, et al. Simulating turbulence

method of the atmosphere scene simulator[J]. Semiconductor

Optoelectrctronics, 2006, 27(6): 764-766. (in Chinese)

[5] Cai Dongmei, Yao Jun, Jiang Wenhan, et al. Performance of

liquid鄄crystal spatial light mudulator using for wave鄄front

correction[J]. Acta Photonica Sinica, 2009, 29 (2): 285-290.

(in Chinese)

[6] Li Dayu, Hu Lifa, Mu Quanquan, et al. Wave鄄front

calculation of liquid crystal adaptive optics based on CUDA

[J]. Optics and Precision Engineering, 2010, 18(4): 848-853.

(in Chinese)

[7] Li Jingzhen. Handbook of Optics [M]. Shanxi: Shaanxi

Science & Technology Press, 2010: 7. (in Chinese)

[8] Duan Jin, Wang Xize, Jing Wenbo, et al. The atmosphere

turbulence simulation based on Zernike polynomial [J].

Journal of Changchun University of Science and Technology

(Natural Science Edition), 2010, 33(3): 60-62. (in Chinese)

[9] Han Liqiang, Wang Qi, Shida Katsunori. Outage probability

of free space optical communication over atmospheric

turbulence[J]. Infrared and Laser Engineering, 2010, 39(4):

660-663. (in Chinese)

[10] Wang Jiang′an， Zhao Yingjun, Chen Dong, et al. Effects of

turbulence sizes on the error rate of atmospheric laser

communication system [J]. Infrared and Laser Engineering,

2009, 38(4): 655-659. (in Chinese)

[11] Lv Jie, Zhang Tianxu, Zhang Biyin. Applications of MPI

parallel鄄computing on image processing [J]. Infrared and

Laser Engineering, 2004, 33(5): 496-499. (in Chinese)

Kong Yue et al: Calculation of liquid crystal
wave鄄front generation atmospheric turbulence simulator based on GPU 3065

