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Abstract: An improved metal鄄insulator鄄metal(MIM) waveguide structure was used to realize the potential
of surface plasmon amplification by stimulated emission of radiation (SPASER) as amplification, although
a major problem is that the net gain of SPASER equals zero, which makes it unsuitable for amplification.
With the use of a theoretical Hamiltonian model as basis, the lasing conditions were obtained. The
numerical calculations of these conditions show that overcoming the inherent feedback and eliminating the
surface plasmon (SP) net gain are feasible by using the improved MIM waveguide structure, which can
achieve stable SP excitons in less than 100 fs. This study shows that the improved SPASER amplifies
with a response time of 100 fs, a bandwidth of 1.5-2.0 THz, and an SP gain of 30-60 dB. SPASER
amplifier research provides theoretical and technological foundation for large鄄scale integrated photonic
chips.
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0 Introduction

Surface plasmon (SP) waves are interactions
among free charges that can migrate in an
electromagnetic field and a conductor. Electromagnetic
waves that propagate on the surface of the conductor
have an energy quantum called surface plasmon
polaritons (SPPs). SPPs that spread along the metal
surface have exponentially decaying fields (evanescent
fields) that are perpendicular to the surface[1-4]. Therefore,
the electromagnetic energy of SPPs is strongly
confined to the vicinity of the surface, which
significantly enhances the near鄄field intensity near the
metal surface and makes SPP excitation and
electromagnetic distribution very sensitive to various
features of the surface (e.g., changes in morphology
and permittivity)[5-9]. The key question in SPP technological
applications is the improvement of propagation lengths
while oscillation intensity is reduced to 1/e [10]. Given
strong attenuation caused by ohmic effects,
propagation length with a visible light wavelength of
500 nm is approximately 2 滋m. Even with long鄄range
SPP waveguide technology, the propagation length is
only about 22 滋m [11 ] . Current SPP propagation and
related research reports that SPASER is the smallest
laser and the first nanoscale active device that
operates in the visible wavelength or a wider range[12].
In the past 10 years, SPASER research has made the
following significant achievements: the definition of
SPs and establishment of a theoretical manipulation
model, the determination of the life cycle of quantum
structure SPs, research on dimensionless gain
characteristics in systems and discussion of scattering
conditions, and excitation of plasma oscillator with a
high Q value and a fixed two鄄dimensional array
structure. These achievements in the production of
localized spatial and temporal coherence of SPASER
amplifiers provide excellent conditions [13-21]. However,
because of nonlinear gain saturation, the inherent inner
feedback of SPASER leads to very low population

inversion in continuous wave mode, which indicates
that SPASER as a continuous wave generator
corresponds to zero net amplification and thus cannot
be used as an amplifier. To address these issues, this
study uses the improved MIM waveguide structure to
overcome the inherent feedback and elimination of the
SP net gain [ 22 - 26 ] . Results of a study of the design
feasibility and parameters have a certain reference
value for the integration of SPASER with a bistable
SP wave amplifier.

1 Theoretical foundation of SPASER

1.1 SPASER
To describe the physical processes of the bistable

SPASER amplifier, we need to solve the eigenmode
equation of the SP wave in waveguide boundary
conditions. The SP eigenmodes at the metal surface
can be expressed by the wave equation

荦 (r)荦 n(r)=sn荦2
n(r) (1)

where n is the mode number; Sn is the corresponding
eigenvalue , and ( r ) is the characteristic function .
The value of r is 1 in the metal component and 0 in
the dielectric. The eigenvalues Sn are real numbers in
the range 0臆Sn臆1. The eigenmodes are normalized

by integration over the volume 乙 V|荦 n(r)|2d3r=1. n is

the physical frequency of the SPs, given by Re[s n]=sn,
where s( )= d/[ d- m( )] refers to Bergman忆s spectral
parameters. d and m are the dielectric constants for
air and metal, respectively.

With the Hamiltonian defined according to Eq.(1),
the SPASER Hamiltonian has the following form:

H=Hg+
p
移E軑(r軆p)d軋(p) (2)

where Hg is the Hamiltonian of the gain medium, p is

an index of the gain medium chromophore, r軆p is the

coordinate vector, and d軋(p) is its dipole moment operator.
1.2 SPASER lasing conditions

In the density matrix, the difference in the
diagonal element is used to describe the population
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inversion number, while the non鄄diagonal element
corresponds to the transition process. In semi鄄classical
approximation, a赞 n is considered as classic an, which
is represented as an=a0nexp (- i t) , a time鄄dependent
parameter, where a0n is a slowly changing amplitude.
The quantum number of the coherent SP for a
SPASER transmission mode can be determined by
Np=|a0n |2. In the standard method, by exchanging with
H, the satisfied equation is obtained and solved to
realize the time鄄dependent variations. According to the
above theoretical analysis, the SPASER lasing
conditions can be written as:

(g+G12)2
gnG12( 21- n)2+(G12-gn)2

a觷 p|
(p)
12 |2n

(p)
21 =1 (3)

where 21 is the gain transition frequency, n is the
plasma frequency, n (p)

21 is the population inversion

number of the p-th chromophore.

2 Theoretical description of structural
design

We present a theoretical description of the
structure (Fig.1), which includes the ordinary and the
improved MIM waveguide structures.

Fig.1 Ordinary MIM waveguide structure (a) and improved MIM

waveguide structure (b)

2.1 Physical description of SPASER amplifier
A bistable amplifier composed of a saturable

absorber implanted in the SPASER structure is a
prominent feature of this project. Generally, bistability
is the result of nonlinearity caused by the presence of
a saturable absorber in the system. The saturable
absorber is a chromophore whose absorption overlaps
with SP emission lines yet only indirectly absorbs the
radiation produced by the pump SPASER[21-24,27].

Physically, when the a phase of the coherent SP
field is determined by synchronous noise, SPASER
activity is the result of spontaneous symmetry
breaking. The mathematics indicates non鄄trivial
solutions in the differential equations for the
description of SPASER. The stable part of the isolated
solution suggests the following conclusions: with an
increasing pumping rate, the critical pumping rate g
appears, in which process the saturated absorber
density a also increases; when the threshold g reaches
a given a, the nonzero Nn branch interrupts, whereas
the branches of Nn =0 and Nn >0 are stable and can
retain their state. The transition between these two
stable states can be achieved by increasing or
decreasing the number of the SP quantum in the
transmission mode, whose relationship is written as
a=3 . Therefore, SPASER with a saturable absorber

can serve as a nano鄄storage unit and quantum
amplifier equipment based on bistability, whose
dynamic response is at the femtosecond level.
2.2 Equation for population inversion in structure

The SPASER rapidly relaxes to zero with a small
initial particle number Nn, whereas gain medium
particles quickly reach a high n21, that is, a decreasing
SP mode number transmitted by SPASER eliminates
the stimulated radiation. The SPASER remains stable
for a long time, although it pumps continuously. By
contrast, when the initial number of SP excitons is
large enough, the SP population in the SPASER mode
reaches Nn 抑60. The SPASER exceeds this state in
less than 100 fs because of the relaxation oscillations.
As the SP population stabilizes, the population
inversion n21 of the gain medium is fixed at a low
level, which is a typical CW regime of the SPASER.
The experiment shows that this state is maintained as
long as the pumping supports the population inversion.

Under pulse pumping, the population inversions
generated by a short pulse in the bistable SPASER are
expressed by Eqs.(4)-(6).

(p)
12 =-[i( - 12)+ 12]

(p)
12 +in

(p)
21

(p)*
12 (4)
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n軈(p)
12 =-4Im[

(p)

12
(p)
21 ]- 2(1+n

(p)
21 )+g(1-n

(p)
21 ) (5)

a觶 on=[i( - n- n)]aon+i
p
移 (p)*

12
p
12 (6)

where (p)
12 is a non鄄diagonal element of the density

matrix of the p-th chromophore; n (p)
21 is the population

inversion number, that is, the difference in the
diagonal element of the density matrix; the constant

12 is a representative of the polarization relaxation;
(p)
12 =-Ad

(p)
12 荦 n( r軆p)a0n/ is the Rabi frequency for the

spasing transition in the p-th chromophore; d (p)
12 is the

corresponding transitional dipole element; and 2 is the
decay rate.

3 Model validation of finite element
analysis

For the structures in Fig.1, which were compared
for model validation, we use finite element method to
model the numerical computation. Changes in
eigenmodes determine the accuracy of the structure of
SPP propagation. Based on these results, the model
eigenmode for the structures is solved. The results are
shown in Fig.2 and Fig.3, which present the
electromagnetic field distributions for the two MIM
waveguide structures. These distributions suggest that
the improved MIM waveguide structures do not change
the electromagnetic field distribution, which verifies the
accuracy of the model, and that the SP net gain in the
model is feasibly corrected.

Fig.2 Electromagnetic field distribution of the ordinary electric

field (a) and magnetic field (b)

Fig.3 Electromagnetic field distribution of the improvement

of electric field (a) and magnetic field (b)

4 Results of simulation of SP excitons

The SP exciton number in the low and high
states for the SPASER amplifier忆 s transience of
modification is shown in Fig.4. The SPASER, which
has a series of relaxation oscillations when the initial
population Nn is less than the threshold, relaxes
rapidly when the Nn approaches zero because of the
transition of the enhanced energy in the metal to the
SP model. In Fig.4(b), when the initial population Nn

is large enough, the number exceeds the initial
populationwithin a fewhundred femtoseconds. Theoretical

(a) Bistable of low state

(b) Bistable of high state

Fig.4 Curve of SP excitions number
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analysis shows that when the SP exciton number
stabilizes, it remains in this state for a long time.

To further characterize the ampli fication of the
SPs, the contrast of power spectral density for the
SPASER amplifier is illustrated in Fig.5, which shows
that the loss in the SPASER amplifier is significantly
smaller than that in the general SP lasing structure.
Theoretical analysis and simulation results indicate that
the performance indices of the developed bistable
SPASER amplifier can reach a response time of 100 fs,
a bandwidth of 1.5 to 2.0 THz, and an SP
amplification gain of 30 to 60 dB.

(a) Ordinary SP

(b) SPASER amplifier

Fig.5 Contrast of S( )

5 Conclusion

The optical structures and devices of propagating
SPPs provide an effective way for the manipulation of
photons at the nano-scale, the accomplishment of the
all-optical, and the development of the smaller, more
efficient nanophotonics. The most signification result
is the study of the improved MIM waveguide
structures, analyzing the optical bistability characteristics,

simultaneously. Combined with theoretical analysis and
simulation results, we can achieve that overcoming the
inherent feedback and elimination of the SP net gain
are feasible by using the improved MIM waveguide
structure, which can achieve a stable level of SP
excitons in less than 100 fs time, meanwhile the study
obtain the performance indexes of the developed
bistable SPASER amplifier. SPASER amplifier
research will provide theoretical and technology
foundation for large鄄scale integrated photonic chip.
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