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Effects of real environments on the performance of quantum Lidar
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Abstract: The effects of loss and noise (real environments) on the performance of quantum lidar with odd
coherent superposition states source (OCRS) was investigeted. The general expression of conditional
probabilities and parity photon counting measurement strategies were exploited to derive the mean value of
the output signal and its phase sensitivity from the Mach—Zehnder interferometer (MZI). It can be found
from the output signal that loss destroys the coherence and further descents the performance of lidar. The
numerical calculation shows that the odd and even interference fringes emerge in the whole interference
pattern, and the odd interference term which represents the coherence is extremely sensitive to particle loss.
The odd coherent states quantum lidar outperforms the performance achieved by the traditional coherent
states (CS) lidar only in small loss regimes. However, in the noisy environments, OCRS gives the better
resolution and sensitivity than CS in the regions of k>0.3 and «>0.06, respectively.
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0 Introduction

Resolution and sensitivity are extremely important
parameters for many fields of science and technology,
these fields involve in quantum metrology, imaging,
object ranging, quantum sensor and quantum radar or
lidar'", to name a few. In a traditional coherent-light
Mach—Zehnder interferometer(MZI), the resolution and
sensitivity are known as the Rayleigh resolution limit
and the shot-noise limit, respectively. The -classical
diffraction limit and shot-noise limit can be beaten by
utilizing some non-classical states of light as the input
of MZI. One of the most prominent examples of such
a non-classical state is the NOON state, which is an
equal coherent superposition of N photons in one path
of a MZI with none in the other, and vice-versa®™"l.
However, due to inevitable interactions with the
surrounding environment, the NOON states tends to
decohere in the presence of loss and noise, which
makes it difficult to achieve super-sensitivity and
super-resolution. In a lossy interferometer, it has been
shown that a transition of the precision from the
Heisenberg limit to the shot noise limit occurred with
the increase of photon number N. All of these reveal
that using such quantum states of light as the source
of remote quantum sensor, such as quantum Radar or
Lidar, has no advantages than the traditional Radar or
Lidar.

Therefore, Gao and Jiang proposed a super-
resolving quantum lidar scheme with coherent states
(CS), photon-number-resolving detectors®™ and quantum
homodyne detection scheme'®! to beat the classical
diffraction limit. Coherent states of light can mitigate
the super-Beer’ s law in photon loss and maximize
sensitivity. Distante et al and Cohen et al.
demonstrated the super-resolution with Axoc A/2N in a
coherent light MZI and in a polarization version of

10-11]

the MZI, respectively ! However, small noise had

seriously declined the fringe resolution and the

achievable phase sensitivity™. The concept of coherent

state was first introduced by Glauber'”!, and since
then attained an important position in the study of
quantum optics. Based on this work, the odd coherent
superposition states(OCSS) were introduced in Ref.[14].
Coherent superposition and anti-bunching are the main
characteristics of OCSS relative to CS, which indicates
OCSS possessing extensive application prospect.

We present a new Lidar scheme with odd
coherent superposition states source in the presence of
loss and phase noise in this manuscript. The binary-
outcome photon counting data post processing methods
are exploited to enhance the resolution and sensitivity.
The effects of photon loss and phase noise on the
output signal are all considered in the calculation. The
numerical calculation manifests that the odd interference
fringes appear in the interference pattern which means
twofold super-resolution of OCSS compared to CS in
lossless and noiseless cases. Little loss will drop the
amplitude of odd interference peaks rapidly, whereas
the amplitude of the even interference peak keeps
invariability. With the loss further increasing, the odd
interference peaks disappear, and the even interference
peaks begin widening. Only in the small loss regions,
OCSS coupled with the parity detection gives better
resolution than that of CS, while the sensitivities of
these two states are identical in the lossy environment.
In addition, the effects of the phase noise on the
output signals are emphasized. The numerical results
show that OCSS gives better resolution and sensitivity
than that of CS in the phase diffusion interval of k>
0.3 and >0.06, respectively.

1 Two-mode interferometric quantum
Lidar scheme with odd coherent

superposition states sources

Figure 1 illustrates the two-mode interferometric

quantum Lidar scheme, which is consisted of a

standard MZI fed with odd coherent superposition

states of light, two fictitious beam splitters B(7) and a

phase shifter (PS) Ag(¢). Path a and b represent the

S106006—-2



TNk TAE

% S1 41

www.irla.cn

%47 %

Fig.1 Scheme of a two-mode interferometric quantum lidar with OCSS

probe signal path and local signal path, respectively.
An odd coherent superposition state is injected into
one port of the MZI and the other port is left in
vacuum |0>. After passing through the first 50:50 beam
splitter (BS1), the coherent superposition state is turned
into N,(lie/ V2 Y=/ N2 Y=l—=ia/ V2 Yla/ 2 ))
which is in fact an entangled coherent state. The roles

of photon loss are described by introducing one

fictitious beam splitter é(T) after the phase accumulation

and phase-diffusion process. The fictitious beam

splitter I§’(T) couples the interferometric mode a (or b)
and the environment mode e with transmissivity 7.
The reflectivity corresponding to 7 is denoted as R.
The state after BS1 will be further transformed by the
phase shifter, the fictitious beam splitters and the
second 50:50 beam splitter (BS2), thus, the result

states can be written as

197) =N, (1 Bsin-£-) = Beos-£-) 1=y ) 1=i7e®) =
I—Bsin2£>a|Bc052£>hl'y>ar|ivei‘”>h) (1)

where B=\T e’ and y=\R/2 «, a' and b’
represent the loss mode of the two path. The density
operator of this state is given by po' =) ew ou {Yl, SO
that the output states of the MZI after tracing out the
environment mode take the following form
Pou=IN,I* (1) J—8) 1, (=8l &l+

~2Rlal’

[—&),8),,( 8l (—el—e le)l-8),X

b< 8|a<_gl_e |8>a|_8>bb<_8|a<8|) (2)

where e=VT ozsinzﬂe"“”2 and 6=V T acoszﬂe"“?’z. It

can be seen from Eq.(2) that photon loss suppresses

the off-diagonal coherence between the two sensor

~2Rlal’
states by a factor of e

and further destroys the
expected performance of the system.

In the following we show that by substituting the
intensity detection with a simple photon counting
scheme with a post-binarization process, we beat the
standard resolution limit and the shot noise limit in

lossy and noisy environments.

2 Binary-outcomes parity photon

counting measurement

Binary-outcome photon counting measurements
are the common detection methods in the fields of

[10-12]

quantum metrology and interferometry . Parity

photon counting detection guarantees the optimal
measurement of phase shift in optical interferometer in
a wide range of non-classical input states of light. A
general photon counting is described by a set of
projection operators {ln,m){n,ml} with the two-mode
Fock states |n,m)=In),m),. According to Eq.(2), the
probability for detecting n photons at the output port a
and m photons at the port b, i.e., coincidence rate
P(n,mIT,cp):(n,mlﬁw[(T,cp)In,m% is given by

n

20302 P
Tlal*sin 5 ) X

P(nmIT,@)=2IN,*{[e"" |

m n

( Tlozlzcoszz£ ) _o et et (—TI alzsinzﬁzﬂ | %

(—ﬂal2cos252&) Vn! m! ) (3)

According to recent reports, there are two typical

photon counting measurements, the parity detection

and the zero-nonzero detection, and zero-nonzero

photon counting gives better sensitivity than parity
detection.

Parity detection was first proposed by Bollinger

et al in the context of trapped ions in 1996, and later

this detection was adopted for phase estimation by
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Gerry. The parity detection, described by a parity

aa

operator f[a=(—l)"”=eiﬂ at the output port a, divides
the photon counting data {n,m} into binary outcomes
+, according to even or odd number of photons n at
that output port. In other words, if » is an even number,
I1.=+1, otherwise II,=-1. According to Eq.(3), the
probability for detecting n photons at the output port a
can be obtained through summing over m, with its
explicit form

2
al

P(IT, @)=2IN e " [| Tatsin* - |/l x

L > 2
Tal cos ~Tal cos £

@ 2
2 —2Rlal 2

e - e ( —Y1oz|2sin252E /n! 1 (4)

Through a sum of P (nlT,p) over the odd or
the even number of n, the conditional probabilities
P(zIT,p) can be obtained as

2 2
-9 in £
2Tlal sin S _olal’

P(i):zmdorcvcn ,,P(an,(P)le)lz(].ie +e
—2T|u\lcosz‘_§—72Rlﬂ\l
Fe ) ()
One can note that P(+)+P(-)=1, and
~ ) ~2Tad"sin” izﬂ _oRlal’ ~2Tal’ cos” ‘ZE
(IT)=P(+)-P(-)=2IN (e —e )(6)

Thus, from Eq.(6) it follows that the loss term

efmﬂf just right erodes the coherence and further decays

the detection performance.

2.1 Role of photon loss on the resolution and
sensitivity

The theory and experiment of quantum
interference with coherent states have already been
detailed™~*21. However, in practical environments, the
output performances of this kind interference are not
the optimal at all. In the following section, the effects
of loss on resolution and sensitivity have been
analyzed based on above proposed scheme.

The resolution of the interference signal mainly
depends on the types of light sources and detection
schemes. In the absence of loss, the output signal of
OCSS shows 2—fold super-resolving relative to that of
CS, which is depicted in Fig.2 in solid line (the

parity signal of OCSS) and in dot-dashed line (the

parity signal of CS). According to Refs. [8 -9],

resolution of parity measurement for coherent states is

VN times improvement compared with the traditional

intensity detection. Therefore, resolution for OCSS is

2V/N times resolution enhancement relative to that of
the traditional intensity signal (the blue dot-dashed
line) of CS in the sense of the well-defined narrow
feature, which has beaten the Rayleigh diffraction
limit.

If the photon loss is taken into account, the
situation will be different. Figure 2 shows the parity
signal for OCSS in the case of 7=1 (solid line), 0.99
(dashed line), 0.97 (dotted line) and 0.95 (dot-dashed
line). It can be seen that 1% of the photon loss will
make the interference pattern change markedly. Now,
we define the peaks of the interference signal at the
coordinates of 2km(k=0,1,2,---) as the even interference
peaks, and the rest peaks are referred to as the odd

interference peaks.

1.0 "

0.5H ¢ L J

<>
(=]

-0.5}

Fig.2 Expectation values (I1) of Eq.(6) are plotted in lines
against phase shift ¢ for an average power of N=10 in
the absence and presence of loss, respectively.
Dot-dashed lines represent the normalized "classical"
intensity difference signal and the dashed lines are the
parity signals for CS. The solid, dashed, dotted and
dot-dashed lines represent the cases of 7=1, 0.99,

0.97 and 0.95, respectively

Then, photon loss greatly declines the amplitude of
odd peaks and has no effects on that of even peaks.

The rate of descent for the amplitude of odd peaks

Rlal

"~ of Eq.(6), in

other words, the resolution of interferometric fringe

mainly depends on the lossy term e

S106006—4
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will be declining with the increasing loss rate R. If
the resolution of interferometric fringe is represented
as FWHM, then

the average resolution can be

expressed as

2
- —2Rlal

Ax =FWHM/(1+e ) (7)

From Eq. (7) we can see that the resolution
depends on FWHM and R, while FWHM will also
been affected by R. The fringe will be expanded with
the increase of loss rate R, which can also be found
in Fig.3. In much small loss regions (i.e., 0<R<0.2),
parity signal for OCSS (solid line) gives better
resolution than that of CS (dashed line). However, in

the rest loss regimes, resolution for OCSS is in

agreement with that of CS.

1.8

0.2

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9
R

Fig.3 Resolution of parity photon counting measurements for OCSS

and CS against loss rate R with N=2

Due to []*=1, the Gaussian error —propagation

formula gives the phase sensitivity:

Ap=V1-(TT)? Nd(TT)/dgl (8)

The sensitivity for most interferometric signal is
susceptive to loss and noise. In order to analyze the
effects of loss on sensitivity, according to Eq.(6) and
Eq.(8), we plot the minimum sensitive against R in
solid curve in Fig.4 and the descending sensitivity
with the increasing loss is obvious. The dashed line is
the best sensitivity of CS with parity measurement.
One can see that all lines merge with each other,
which indicates the same effects of loss on all

sensitivities. Therefore, the sensitivities of CS and

OCSS are all at shot noise limit.

-CS

0.1 0.3 0.5 0.7 0.9

Fig.4 Best sensitivity of parity photon counting measurements for

OCSS and CS against loss rate R with N=16

2.2 Effects of phase noise on resolution and

sensitivity

The accumulated phase generated from the
progress of light passing through the environment or
media is a significant parameter for Lidar ranging.
After phase accumulation, phase-diffusion process
produces a phase noise A in one of the two paths
(as depicted in Fig.1). Generally, the presence of
phase noise can be modeled by the following master
equation: 8;3/81:7(21\7;3]@—1925—5192) with N=a*a and
the phase-diffusion rate y. According to Refs.[15-16],

the solution of [) is given by an integration ;;KOC H dx
R

—x"I(4k) A

e U(x)p;(cp) ﬁ*(x), where k=t is a dimensionless
diffusion rate. Note that the phase-encoded state ﬁ(¢)

obeys lA](x)ﬁ(cp)lA]"(x):fA)(xﬂp) for the noiseless case.

Replacing x—x—¢, we obtain the final state
pw=lNVaTK | dve " o) ()

where [)(,m(cp) has been given by Eq. (2).

In the presence of the phase diffusion, all the
relevant quantities can be obtained by integrating the
Gaussian with the quantities without diffusion. For
example, the binary-outcome parity photon counting

measurement gives the output signal:
(1) =1/Vam«k JRdxe'“‘"‘” " (10)

where (IT) has been given by Eq.(6). Integrating it
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with the Gaussian, we can obtain the exact numerical
results of the resolution as a function of the diffusion
rate k depicted in Fig.5. The results indicated that all
resolutions have decreased when the phase diffusion
rate increases. However, the different changing
tendency of resolution will be occurred in different
diffusion region. In the diffusion region of «k <0.3,
OCSS gives the same resolution as that of CS. While
in the rest regime, parity detection for OCSS (solid
line) gives better resolution than that of CS (dashed
line). In other words, the resolution of OCSS is much

better than CS in large noise regimes.

3.2

1.8

—_ =
L =)

Resolution
_-
1)

1.0

06751 03 05 07 09

K
Fig.5 Resolution against phase diffusion rate k with the average

number of photon N=10

Similarly, according to Eq.(8) and Eq.(10), the
numerical results of the sensitivity are illustrated in
Fig.6. From Fig.6, it can be seen that the best

10"

————
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g
-

_.
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<
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2

—_
(=4
©

- CS
—O0CSS

0.1 0.3 0.5 0.7 0.9
K

The best sensitivity Ag,,,,

_.
2

Fig.6 The best sensitivity against phase diffusion rate k with the

average number of photon N=10

sensitivity against phase noise of OCSS merges with
that of CS in the diffusion regimes of k <0.06.
However, in the diffusion regions of k<0.06, the best
sensitivity of CS(dashed line) rapidly declines and the
best sensitivity of OCSS slowly descends, that is to
say that OCSS gives better sensitivity than that of CS.

3 Conclusion

In conclusion, the theory of lidar with new light

been  investigated in  practical

The odd coherent

sources has

environments. states with the
characters of coherence and superposition have been
adopted as the light source of lidar, and parity photon
counting measurements are exploited to enhance its
OCSS produces

resolution and sensitivity than CS under a certain

performances. Surprisingly, better

conditions, especially in larger phase noise and smaller
OCSS gives

better resolution than CS in the lossy regions of 0<R<

loss environments. More specifically,

0.2, and gives the same sensitivity as CS in the whole
loss regimes. Taking the phase noise into account,
OCSS performs better resolution and sensitivity in the
regime of k>0.3 and k>0.06, respectively. In a word,
in large noise environments, the performance of lidar
with odd coherent superposition states light of sources
are superior to the traditional lidar. Finally, our

proposed scheme can be implemented in LADAR,

especially in laser Doppler velocimetry.
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