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Abstract: Classification of sea and land returns in airborne lidar was essential for the research of coastal
zones and their changing nature. A method for classification using deep learning on the original airborne
lidar echo was proposed. A fully connected neural network, and a one -dimensional convolutional neural
network (CNN), were used on a training dataset and test datasets from in -situ measurements, and a
classification accuracy of 99.6% was obtained. The model was utilized on the datasets from different
areas, a classification accuracy of 95.6% was achieved and the processing speed was increased by about
52% compared to support vector machine (SVM) method. The results denote that the deep learning
method is very effective for classification of airborne lidar echo waveforms with high precision and speed.
It may present further use as a candidate method for classifying species on the sea floor with airborne
laser bathymetry.
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基于深度学习的机载激光海洋测深海陆波形分类
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摘 要： 机载激光雷达的海陆波形分类对于沿海地区及其变化性质的研究至关重要。提出了一种在
原始的机载激光雷达回波上使用深度学习进行分类的方法。构建全连接神经网络和一维卷积神经网
络(CNN)，在一个测量海域的数据集上进行训练和测试，最优模型获得了 99.6％的分类精度。该最优
模型对来自不同测量海域的数据进行分类，分类精度达到了 95.6％,相比支持向量机方法，处理速度
提高了约 52%。结果表明：深度学习方法对机载激光雷达回波波形的分类具有较高的精度和速度，它
可以进一步作为通过机载激光测深技术对海底种类进行分类的候选方法。
关键词： 海洋测深； 激光雷达； 分类； 深度学习
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0 Introduction

Coastal zone topography is of fundamental
importance to marine science and economic
development. Airborne lidar bathymetry is a powerful
tool for examining coastal zones, islands, reefs, and
their surrounding seabed topography. Major
commercial lidar products include CZMIL [1] from
Optech and HawkEye [2] from Leica, and these have
already been used for survey applications. The
authors′ lab at the Shanghai Institute of Optics and
Fine Mechanics (SIOM), Chinese Academy of
Sciences, has also been developing airborne laser
bathymetry lidar systems, called LADM-I, LADM-II,
and Mapper5000.

The return echoes of airborne lidar bathymetry
are digitized into full waveforms from the sea surface
to sea floor. To determine the sea surface and sea
floor respectively, both infrared and green laser are
used. The waveform of an airborne ocean lidar return
signal is complicated and variable, due to the random
rough sea surface, different types of sea water, and
mixing with a shallow sea floor. Moreover, the lidar
returns from the infrared laser are sometimes lost. In
addition, in the case of coastal zones, it is hard to
record the lidar echo from either the land or the sea
surface. Therefore, an automatic classification method
for airborne laser bathymetry is preferred to achieve a
high-performance three-dimensional Digital Elevation
Model (DEM) of a coastal zone.

Currently, there are several methods of
classification[3]. The first one is based on the saturation
of the peak intensity of lidar returns owing to the
different reflectance of the land and sea surface [4] .
While the saturation is variable because of the varying
status of the sea surface, the returns can also be
saturated at different aircraft altitudes or with different
sea waters. The second method is distinguished by
another channel of Raman scattering, or the
polarization of sea water [ 5 ] . This method is effective

and simple, yet it nonetheless attaches a higher
complexity and cost to the lidar system. The third
method is classification of signal waveforms using the
SVM method of machine learning [6], which functions
by constructing a vector model of features by
extracting some characteristic parameters from the
echo signal waveforms. Good results were
demonstrated with this method, although a great
amount of work is involved in the extraction of the
characteristic parameters and calculation from huge
waveforms; thus, it is time consuming. The fourth
method is to classify the terrains by known analytic
models of the terrains[7], which is suitable for the case
where the object characteristics change little.
Therefore, a higher-efficiency, simpler, and faster
classification method is desired.

As a branch of machine learning algorithms,
deep learning is based on the establishment and
simulation of deep nonlinear neural networks for
human brain analysis and learning. Deep learning
systems can learn a deep nonlinear network structure,
characterize input data, implement complex function
approximation, and demonstrate a powerful ability to
learn the essential features of datasets from a small
sample set. In recent years, deep learning algorithms
have been rapidly developing, and have become
highly effective for object recognition. The method of
deep learning is widely used in the fields of language
recognition and image recognition. Recently, deep
learning has been applied to the field of lidar and
used with lidar data in a multitude of areas, such as
the modeling of buildings [8], the classification of land
cover or objects[9-10], the automatic landing of aircraft[11],
and automatic driving target recognition [ 12 - 15 ] . These
applications are based on the post-processed point
cloud data from the lidars.

In this paper, the deep learning method is
implemented to classify land and sea from the original
echo signal waveforms from airborne laser bathymetry.
An in-situ measurement dataset is used for training
and testing. The mapping of the coastal zone is
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demonstrated using lidar data processed with the deep
learning method.

1 Materials and methods

1.1 Datasets of airborne laser bathymetry
The datasets are acquired by the Mapper5000-S

airborne laser bathymetry system developed by SIOM.
The lidar system has lasers of two wavelengths, 1 064 nm
and 532 nm, with a repetition rate of 1 000 Hz. It can
function in conjunction with either a helicopter or a
fixed-wing aircraft, at an altitude of 300 -1 000 m.
From an altitude of 300 m, the swath width is 210 m,
with a grid of 2.5 m ×2.5 m, and the horizontal and
depth accuracy is 0.3 m and 0.2 m, respectively.
There are three receiver channels on the Mapper
5000 -S, including a sea surface channel, a shallow
water channel, and a deep water channel. The
avalanche photo diode (APD) is used to detect the
echo signals of 1 064 nm. Both photomultiplier tubes
(PMT) are applied to detect shallow and deep water
with different fields-of-view.

The training dataset and testing datasets are
extracted from the flight data of Mapper5000 -S,
collected at Wuzhizhou Island, Sanya, China, on
December 25, 2015. The flight paths are shown in
Fig.1(a); the data from flight path 0 is selected as the
training dataset, and flight paths 1, 2, and 3 are
selected as testing datasets and are named as testing
dataset No.1, No.2, and No.3, respectively. Through
satellite imagery, hydrological data, manual assisted
surveys, and GPS positioning data, all the echo data
are labeled as "Land" or "Sea".

The flight area for the applied demonstration is
selected as shown in Fig .1(b) , and denoted Y . This
area is about 42 km from the training and testing area,
denoted X. Although the lidar data was recorded on
the same day as the training and testing data, the
terrain and sea water quality are quite different from
the training and testing area. The sea water around Y
is clearer than that in the vicinity of X.

Fig.1 Flight area and flight paths for (a) the basis of the training

and test datasets and (b) the training area and application area

Because of the variation in terrain and sea water
quality, the echo signal waveforms in the different
areas are distinct. Sample echo signal waveforms from
one measurement point of the lidar are shown in Fig.2.
Figs.2 (a) and (b) show echo signals from shallow
water and land in the training and testing area, and
Figs.2(c) and (d) show echo signals from the shallow
water and land in the application area. It can be seen
that the surface reflecting echoes from land and sea
have particular characteristics, and the characteristics
of the echoes at each measurement point are different
in the datasets.

The echo signal from each measurement point
consists of three waveforms on three channels; an
echo waveform has 5 500 digitized sample points, and
each digitized sample point consists of 2 bytes, thus
the total data length of one echo signal is 3×5 500×2
bytes. The training dataset contains 23 411 echo signals;
test datasets No.1, No.2, and No.3 contain 82 651,
11 165, and 18 716, respectively . We implemented
2 851 448 echo signals for the applied demonstration.
As shown in Fig.2, only a limited amount of data
from each returned waveform is taken as the effective
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signal sampling for training. The length of the
effective signal is 100 digitized sampling points, and
its center point is approximately the peak of the return
echo. The amount of storing and calculating is thereby
reduced greatly, so the deep training can be run on
either the GPU or CPU of a personal computer.

Fig.2 Sample echo signal waveforms in the training and test area,

and application area: (a) echo signal from shallow water in

the training and test area, (b) echo signal from land in the

training and test area, (c) echo signal from shallow water in

the application area, and (d) echo signal from land in the

application area

1.2 Methodology
Deep learning is used with Google's deep

learning framework Tensorflow, which is an open
source software library for high performance numerical
calculations, and provides powerful support for
machine learning and deep learning. Because of its
flexible architecture, users can easily deploy computing
work across multiple platforms (CPU, GPU, TPU) and
devices(desktops, server clusters, mobile devices, edge
devices, etc.)(https://www.tensorflow.org).

Two network models of a multi-layer fully
connected neural network and a one-dimensional
convolutional neural network (1D CNN) are chosen,
which are commonly used in deep learning for
waveform classification. In a multi-layer fully
connected neural network, all neurons in the adjacent
two-layer neural network are connected, whereas in a
CNN, the neurons are partially connected between
layers. Their structures are shown in Fig.3.

In Fig.3 (a), the first layer is an input layer with
3 ×100 neurons, the second layer is a hidden layer
with 1 024 neurons, the third layer is a hidden layer
with 128 neurons, and the fourth layer is a softmax
layer with two neurons-this returns an array of two
probability scores that sum to 1. Each neuron contains
a score that indicates the probability that the current
signal waveform belongs to one of the two classes.
The dropout layers between hidden layers are
generally not counted in the total number of layers
and are not specifically included in the diagram. This
network has 439 682 parameters to be trained.
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Fig.3 Network models structures of: (a) a multi -layer fully

connected neural network and (b) a one-dimensional

convolutional neural network

The structure of a CNN generally uses the
classical, widely used LeNet -5 [16] structure or its
variant, but this structure is generally applicable to the
field of image processing and is a two-dimensional
CNN. The data sequence changes with time, and
needs to adopt a one-dimensional CNN [17 -18]. We
designed a one-dimensional CNN structure as shown
in Fig.3 (b). The first layer is an input layer with 3×
100 neurons; the second and third layers are
convolutional layers with 64 filters and a 3×1 kernel
size; the fourth layer is a max pooling layer that
filters out half of the features by subsampling; the
fifth and sixth layers are convolutional layers with 128
filters and a 3×1 kernel size; the seventh layer is an
average pooling layer; the eighth layer is a flatten
layer with 256 neurons; and the last layer is a
softmax layer with two neurons. This 1D CNN has
120 514 parameters to be trained.

The standard deep learning training process is
one of cyclical training, evaluation, and parameter
tuning. The process involves training the model with
the training dataset, testing the model with the testing
data sets, analyzing the results, then looping the above
process and visually evaluating the training effect
through the Tensorboard module in Tensorflow.

We experiment with different gradient descent
optimizers, learning rates, activation functions, and

loss functions to improve the learning effect. Training
epochs, the number of layers, and number of neurons
in the network model, for comparison accuracy and
performance are adjusted by each other. After more
than 50 loops of training and testing with varying
configurations of models, an optimal model
configuration is chosen. Subsequently, the optimal
model configuration is used to train 200 models on
the training dataset, and the best model is chosen
based on the accuracy of the evaluation on the test
datasets. Finally, the best model is used to predict the
classification result on the applied region dataset, and
the prediction accuracy through satellite imagery,
hydrological data, manual assisted surveys, and GPS
positioning data is also calculated. The comparison of
the calculation performance with a CPU and GPU is
also conducted.

2 Results

Because the deep learning algorithm has a certain
randomness, the accuracy of the model for each
episode of training is also random. The accuracy of
the best model of the 200 trained models on each test
set is shown in Tab.1.

Tab.1 Accuracy on test datasets

The results indicate that the accuracy of the 1D
CNN structure network is greater than the accuracy of
the fully connected structure network, although the 1D
CNN structure network has a smaller number of
parameters. The quantity weighted average accuracy of
1D CNN is 99.45% , and that of the fully connected
structure network is 98.56%.

In the training of a neural network, one epoch
refers to one pass of the full training set; one training
epoch contains many training batches. The trends for

Model structure
Accuracy on
test set No.1

Fully connected 98.78%

1D CNN 99.65%

Accuracy on
test set No.2

97.90%

99.33%

Accuracy on
test set No.3

98.02%

98.64%
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accuracy and loss are shown in Fig.4. Figs.4 (a) and
(c) indicate that in batch training, the accuracy and
loss of each batch tend to converge. Figs.4(b) and (d)
indicate that after ten epochs, the accuracy and loss
level off at favorably high and low values, respectively.

Fig.4 Trends of accuracy and loss in training: (a) accuracy vs

batch; (b) accuracy vs epoch; (c) loss vs batch; and

(d) loss vs epoch

The learning rate, gradient descent optimizer,
activation function, loss function, and data
preprocessing have little effect on the accuracy and
only affect the speed of learning. However, the

number of epochs has a great influence on the
accuracy; too few epochs will cause under-fitting,
whereas excessive epochs will cause over-fitting.
When training the model, it is important to adjust the
number of epochs of the training.

We used the model to classify the application
set. The results of the classification of one flight strip
of the application area are shown in Fig.5. In Fig.5(a),
on the left end of the strip is a seafood farm with a
residential area in the middle, and a coastline and sea
on the right. On the high-resolution overall map, we
found that there is a small number of classification
errors on the left and in the middle, but there is no
obvious classification error on the right. We believe the
reason to be that the training set does not contain
similar target areas, and the model does not learn
the corresponding special diagnoses. In Fig.5(b), it is
obvious that the rate of correct classification in the
ocean and on land is very high, though there are
mistakes at the land and sea junction. Accuracy of the
classification in the area marked in Fig.5(a) is 95.61%.

Fig.5 Mapped results of the classification of one flight strip of the

application area: (a) the whole flight strip and (b) partially

enlarged and subsampled image of the coastline
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On an equivalent computer with Intel Core i7 -
8 700 K and NVIDIA GTX 1050, the training of 200
models on a GPU and CPU took approximately
20.9 hours and 42.9 hours. Using the trained model
to classify 2 851 448 signals of the application dataset
takes about 120 s, it indicates that the processing
speed is high compared to the hours spent measuring
these data.

The classification accuracy of the SVM method
on the test set is 99.03%[6]. Including the extraction of
effective signal operations and classification operations
from raw data, the deep learning method takes about
279 s to process 122 GB of application area data, and
the SVM method takes about 582 s to processes the
same data. The processing speed is increased by about
52% because the deep learning method does not
require complex feature extraction operations.

Point cloud based classification can only be
performed after point cloud generation, while point
cloud generation generally requires time equivalent to
measurement time, and does not include classification
time.

3 Discussion

The traditional classification of lidar returns is
based on point cloud data, which does not contain any
raw signal information, and the classification must be
executed after the flight test and cloud data
generation. From the above results, we find that the
deep learning method based on the original echo data
can realize real-time processing, and the target
classification can be performed during the flight
process. This method offers very attractive efficiency
improvements.

The original waveform may contain more
information that we have not yet exploited, and deep
learning can automatically extract features that we
may not have discovered, so it may not only be
useful for classification of land and sea. In future
work, we will classify the training dataset and the test
dataset with further target area types, such as sand,

stone, shallow water, and deep water, and expect that
an improved target classification may be achieved.

4 Conclusions

The results prove that the method of deep
learning is very effective, with high precision and
speed for sea-land classification of lidar echo signal
waveforms. Compared with the traditional target
classification based on the final DEM point cloud
data, classification based on the original echo
waveforms requires less computation and simpler
implementation, and it may be applied in data-
processing for mapping, and the classification of other
target area types, with appropriate training. Moreover,
it may also be a good candidate method for
classifying species on the sea floor with airborne laser
bathymetry.
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