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Abstract: A strategy for improving the precision of material removal model based on deep neural

networks was proposed. A deep learning algorithm with ability of feature selecting was proposed. A series

of simulation samples composed of a material removal rate and corresponding polishing parameters were

generated based on the model of material removal rate for robot polishing. The deep learning algorithm

learned both the simulation samples and practical samples and then a deep learning model was

established. The error between material removal depth of the test samples and material removal depth

estimated by polishing parameters by using proposed deep learning model was calculated and compared.

The results show that the improved model can achieve higher accuracy than the traditional models.
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基于神经网络的机器人抛光材料去除提升模型

余 熠 1，孔令豹 1，张海涛 2，徐 敏 1，王丽萍 2

(1. 复旦大学 光科学与工程系 上海超精密光学制造工程技术研究中心，上海 200433；

2. 中国科学院长春光学精密机械与物理研究所 应用光学国家重点实验室，吉林 长春 130033)

摘 要院 提出了一种基于深度神经网络的提高材料去除模型精度的策略。提出一种具有特征选择能

力的深度学习算法。在机器人抛光的材料去除率模型的基础上，生成由材料去除率和相应的抛光参数

组成的一系列仿真样本。深度学习算法学习了仿真样本和实际样本，建立了深度学习模型。通过使用

所提出的深度学习模型，根据抛光参数，估测测试样本的材料去除深度，并计算估测了测试样本的材

料去除深度与实际的测试样本的材料去除深度之间的误差。结果表明：改进后的模型可以获得比传统

模型更高的精度。

关键词院 机器人抛光； 材料去除； 机器学习； 深度神经网络； 建模与仿真
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0 Introduction

Industrial robots are widely equipped on automated

production lines for their more freedom and larger

operation space[1]. Typical applications of industrial robot

in modern advanced manufacturing include automatic

baling robots, sampling robots, labelling robots,

navigation and transportation robots and so on [2].

Especially, robot polishing technology has been adopted

in large鄄sized ultra鄄precision manufacturing industries.

Polishing process has low material removal

efficiency but high surface precision which makes it

suitable for ultra鄄precision manufacturing. To improve

the precision of industrial robot polishing process, it

requires deep understanding on material removal rate

(MRR) which depends on polishing parameters as

well as circumstances. Different methods are adopted

to study the material removal mechanism over the past

few years, including finite element method[3], molecular

dynamics [4], quasi鄄static model [5], using fluid dynamics

and probability statistics in the analysis of polishing

fluid [ 6 - 7 ] , etc . . The early investigation of material

removal model can be traced back to Preston who

proposed Preston忆s empirical equation [8]. Buijs et al[9].

presented an MRR model by incorporating Young忆 s

modulus, hardness and fracture toughness. Matsuo et

al.[10] a modified Preston忆s equation based on substituting

frictional force instead of polishing pressure. Shorey忆s

model [11] computed the MRR using the shear stress to

replace the pressure or the frictional force. Through

introducing the exponents to the contact pressure and

the relative velocity, Wang et al.[12] proposed a revised

model.

However, theoretical models of material removal

in industrial robot polishing process is far from

accuracy because the interaction mechanism of

polishing head/pad and workpiece is quite complex,

and it is very difficult to precisely model the

relationship between material removal rate and

polishing parameters.

Development of machine learning provides a new

strategy to establish precise material removal models.

Machine learning addresses the question of how to

build computers that improve automatically through

experience [ 13 - 14 ] . Deep neural networks are able to

"learn" the relationship between polishing parameters

and material removal rate from previous experiences[15].

Surface topography of the workpiece is measured

before and after robot polishing by interferometer, thus

material removal depth of the workpiece is obtained.

Material removal depth and corresponding polishing

parameters are taken as a sample reflecting how

polishing parameters affect material removal rate[16,17].

Although the number of experimental samples

can be thousands of or more, it is still far from

sufficient enough to enable deep neural networks to

establish precise material removal models. Material

removal rate given by the established model is close

to the actual results in a certain degree, which brings

new chance for deep neural networks to "learn" from

samples from both actual polishing process and

theoretical models.

As a result, an improved model of material

removal rate is obtained. The concept of the improved

model proposed will be first explained. Theoretical

fundamentals about Feature鄄selecting deep residual

neural networks are then explained in details. Based

on the proposed model for material removal rate in

robot polishing, a series of experimental studies are

undertaken and the results are presented to validate

the improved model.

1 Improvement of MRR model based on

machine learning

As shown in Fig.1, regardless of random error,

independent variable x and dependent variable y are

two interrelated variables whose correspondence needs

modeling. There must be disparity between the actual

correspondence curve and the correspondence given by

theoretical derivation.
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Fig.1 Principle of model improvement based on machine learning

Provided with enough samples on the actual

corresponding curve of the variables x and y through

actual experiments, and suitable machine learning

algorithms are designed, then the algorithm will learn

sufficient number of samples and the learned

corresponding relationship between variables x and y

will be quite close to the actual correspondence.

However, due to many practical problems, the

variables x and y are both multidimensional vectors

and the corresponding relationship is very complicated,

thus to obtain an ideal learning result requires a large

number of samples as training data, while the actual

situation may not be able to support such a large

scale sample collection.

The limit of cost and time of actual experiment

restrains the scale of actual sample collection, making

machine learning algorithm unable to construct a

correspondence model close enough to real

correspondence by learning actual experimental data.

However, the cost of collecting (calculating) samples

from theoretical model is inexpensive. By acquiring

large鄄scale samples from theoretical model and

learning them using appropriate machine learning

algorithms, a model is trained which can be quite

close to theoretical model. Based on this learned

model, appropriate weights are then assigned to a

relatively smaller number of samples in the actual

correspondence curve (The dots on the actual corres 鄄

pondence curve in Fig.1) to optimize the curve of

correspondence given by machine learning algorithm

based on theoretical derivation data in the graph, and

the optimized model will then be obtained (Curve of

correspondence given by machine learning algorithm

based on theoretical derivation data and experimental

data in Fig.1), which is closer to the actual

correspondence curve than that given by theoretical

derivation.

This is the concept of the improved model

proposed in the present study. To construct an

improved model based on machine learning needs

three elements: a theoretical model, experiment data,

and an appropriate machine learning algorithm.

2 Theoretical fundamentals

2.1 Theoretical material removal rate model

One of the three significant elements needed to

build an improved material removal model for robot

polishing based on machine learning algorithms is a

theoretical material removal model. In the present

study, Preston忆 s empirical equation is adopted as the

theoretical model for machine learning algorithms to

learn from. Preston忆 s empirical equation is described

as follows

MRR=K伊P伊v (1)

Where MRR is the material removal rate (material

removal depth per unit time) at a certain point; K is a

polishing constant related to material of polishing pad

and workpiece and circumstances and so on; P is the

pressure between the polishing pad and the workpiece

while v is the relative speed between the polishing

pad and the workpiece at the certain point.

2.2 Feature鄄selecting deep residual neural networks

Suppose that there exists a data training set D

composed of known samples (x軆i,yi):

D={(x1 ,y1),(x2 ,y2),噎,(xi ,yi),噎,(xm ,ym)} (2)

Where xi is a d-dimensional column vector:

xi =(x
(1)

i ,x
(2)

i ,噎,x
(d-1)

i ,x
(d)

i )T (3)
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When it comes a new test sample (xtest ,ytest) with

known xtest and unknown ytest:

xtest =(x
(1)

test ,x
(2)

test ,噎,x
(d-1)

test ,x
(d)

test )
T (4)

Then there comes a question: based on training

data set D, is there any prospect to establish a

classification or regression model to predict or figure

out the mostly likely ytest according to xtest ? Main task

of machine learning, or supervised learning,

specifically, is to achieve this goal. In this paper,

polishing parameters such as polishing pressure,

relative velocity, polishing time, and so on are

dimensions of column vector x軆while corresponding

MRR is y. A feature鄄selecting deep residual neural

network is proposed in this paper to accomplish this

goal.

Typically, a neural network has the framework

similar to human neuron. An example of a simple

neural network is shown as in Fig.2.

Fig.2 An example of a neural network with one hidden layer

In Fig.2, X, H and Y are input layer, hidden

layer and output layer of the neural network,

respectively. is connection weight and output of the

neural network is computed by

H(1)=X(1)伊 111+X
(2)伊 121 (5)

H(2)=X(1)伊 112+X
(2)伊 122 (6)

Y=X(1)伊 21+X
(2)伊 22 (7)

Once is determined, the neural network is built

up. This paper determines by solving[18]

elastic=min 1
2
{

m

l=1

移|y1 -y1
.

|2+

d

i=1

移
k

j=1

移
2

1ij+

d

i=1

移
k

j= 1

移| 1ij|}(8)

Where yi is output of the neural network if inout of

the neural net work is xi . The first item is root鄄sum

square loss, the second item is rigid regression loss

and the third item is least absolute shrinkage and

selection operator (LASSO). The second and third

items are called regularization items preventing neural

network from being unstable. It is noticed that if or

is appropriately set, some of the 1ij will be quite

small or even zero, which means that corresponding

dimensions of the input have no effect on the output

of the nerual network鄄in other words, the neural

network has feature鄄selecing function(in Fig.3).

Fig.3 Regularization: an example of unstable model, where the

dots are training examples, the green curve is ideal

regression model while the blue curve is regression

model based on root鄄sum square loss function without

regularization

It is difficult to solve Eq.(8). Methods frequently

used to solve Eq.(8) include random gradient descent,

simulated annealing algorithm, error back鄄propagation

algorithm and so on. However, when the neural

network becomes deeper (more neuron layers), which

means increase of learning ability of the neural

network, non鄄convergence issue in the calculation for

gradient is given rise to. In this paper, the neural

network is turned to a residual topological structure to

solve the problem[19].

As is shown in Fig. 4 (a), ReLu (窑) is the activation

0317005-4
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function which aims to attach nonlinearity to the

neural network.

H(1)=ReLu(X(1)伊 111+X
(2)伊 121+X

(3)伊 131) (9)

H(2)=ReLu(X(1)伊 112+X
(2)伊 122+X

(3)伊 132) (10)

H(3)=ReLu(X(1)伊 113+X
(2)伊 123+X

(3)伊 133) (11)

Y(1)=ReLu(H(1)伊 211+H
(2)伊 221+H

(3)伊 231+X
(1)) (12)

Y(2)=ReLu(H(1)伊 212+H
(2)伊 222+H

(3)伊 232+X
(2)) (13)

Y(3)=ReLu(H(1)伊 213+H
(2)伊 223+H

(3)伊 233+X
(3)) (14)

This paper adopts a feature鄄selecting deep

residual neural network whose weights are determined

by Eq.(8) with similar framework of Fig.4 (b) but

having 100 hidden layers and 100 neurons each

hidden layer.

(a) Rectified linear unit (ReLu) as activation function

(b) Feature鄄selecting deep residual neural network with 3 layers

and 3 neurons each layer

Fig.4 An example of a feature鄄selecting deep residual neural

network

2.3 Performance test for material removal model

MRR at each point of the training workpiece is

derived from material removal depth(MRD) of training

workpieces and polishing parameters related to each

point under the circumstance that all polishing

parameters, except polishing time, for any certain

point of the training workpiece are constants

throughout the whole polishing process:

MRR= dMRD
dt

= MRD
驻t

(15)

So a number of experimental samples (Polishing

parameters and corresponding material removal rate) is

obtained. Meanwhile, 100 thousand of simulation

samples (Polishing parameters and corresponding

material removal rate) are built up based on Preston忆s

empirical equation.

The feature鄄selecting deep residual neural

network learns the polishing鄄parameters鄄to鄄MRR

samples coming from both training workpiece and

Preston忆s empirical equation. Then polishing parameters

of each point of the test workpiece are put into the

trained neural network, the output is material removal

rate of each point of the test workpiece predicted by

the neural network.

Material removal depth (MR赞 D) at each point of

the test workpiece predicted by the neural network are

derived from material removal rate(MR赞 R) and polishing

parameters related to each point under the

circumstance that all polishing parameters, except

polishing time, for any certain point of the training

workpiece are constants throughout the whole

polishing process

MR赞D=
T

t=0
乙 MR赞Rdt=MRR伊T忆 (16)

The error between material removal depth of test

workpiece predicted by nerual network (MRD蓻 ) and

actual MRD of test workpiece is defined as:

error=
S ,MRD屹0

蓦 |MR赞 D-MRD|
|MRD|

(17)

The error illustrates the disparity between

material removal model constructed by the proposed

feature鄄selecting deep residual nerual network and

actual correspondence of material removal rate and

polishing parameters.
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3 Experimental studies and results

3.1 Experimental design

Two 120mm伊120mm glass workpieces are marked

as training workpiece and test workpiece, respectively.

The two workpieces are polished with front鄄placed

planetary polishing tool which is carried by ABB

IRB-6620 six鄄axis industrial robot (Fig.5 (a)). Polishing

parameters applied to training workpiece and test

workpiece are shown in Tab.1.

(a) ABB IRB-6620 six鄄axis (b) Zygo gpi xp/d

industrial robot and front鄄 interferometry

placed polishing tools

(c) Polishing pad at the end of (d) Workpiece to be polished

front鄄placed polishing tools

Fig.5 Experimental system

Surface topography of the two workpieces are

measured with Zygo GPI XP/D interferometry(Fig.5(b))

before and after polishing process, respectively. The

MRDs of both workpieces (Fig.6) are got by

computing the difference of surface topography before

and after polishing process, respectively.

Tab.1 Polishing parameters applied to training

workpiece and test workpiece

(a) Material removal depth of (b) Material removal depth of

training workpiece test workpiece

Fig.6 MRD in experimental studies

MRR at each point of the training workpiece are

derived from MRD of the workpieces and polishing

parameters related to each point with Eq. (15), so a

number of experimental samples (Polishing parameters

and corresponding material removal rate) are obtained.

On the other hand, 100 thousand of simulation

samples are got based on Preston忆s empirical equation.

Constant K is concerned in material of polishing pad

and workpiece, polishing fluid, temperature, humidity

and other factors as well as unit of MRD, polishing

pressure and relative velocity. In this paper, K is

determined by minimizing Eq.(17), K=4.73e-5 ( 窑s/

kgf窑mm).

The feature鄄selecting deep residual neural

network learns the polishing鄄parameters鄄to -MRR

samples coming from both training workpiece and

Preston忆 s empirical equation. Polishing parameters of

each point of the test workpiece are put into the

trained neural network, then the output is material

0317005-6

Polishing parameter Training workpiece Test workpiece

Revolution radius/mm 30 40

Rotation speed/rad窑s-1 20 10

Polishing pressure/kgf 1 2

Polishing time/s 30 30
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removal rate of each point of the test workpiece

predicted by the neural network.

MR赞 D at each point of the test workpiece are

derived from MR赞 R and polishing parameters related to

each point according to Eq.(16).

3.2 Results and discussions

The error of Preston忆 s empirical equation and

material removal model given by the neural network

are computed based on Eq. (17) respectively. The

result is shown in Fig.7. It indicates that the error

between based on Preston忆 s empirical equation and

MRD of test workpiece is 36.73% while the error

between based on the feature鄄selecting deep residual

neural network and MRD of test workpiece is 25.16%.

Fig.7 Error of predicted material removal depth

Compared with Preston忆 s empirical equation, the

error based on model given by neural network has a

31.5% drop. In the field of machine learning, whether

the regression or classification error can controlled less

than 10% is a standard to judge whether the

regression model is good. The result shows that,

although the performance of the both two models is

not satisfactory enough, strategy proposed in this

paper do have the ability to build up an improved

material removal model much better than the

theoretical model which the neural network learns

from with a 31.5% error drop.

From the comparison between the prediction of

the algorithm proposed and the actual testing result,

although the method performs better than Preston忆 s

equation does, there are still 25.16% relative errors,

which might be caused by:(1) the number of practical

samples used for training is limited; (2) the Preston

equation itself is not satisfied enough; (3) random error

in polishing process.

In the future research, more suitable learning

algorithms with stronger learning ability are going to

be designed to learn theoretical polishing models more

advanced than Preston忆 s empirical equation, and to

achieve accurate material removal depth prediction of

polishing methods more complex than planetary

polishing.

4 Conclusion

Polishing process with industrial robot has a

significant role in modern advanced manufacturing,

therefore constructing a material removal model of

robot polishing is important. This paper proposes an

improved material removal model for robot polishing

based on Preston忆 s empirical equation and a feature鄄

selecting deep residual neural network. The feature鄄

selecting deep residual neural network learns samples

from both a training workpiece and Preston忆 s

empirical equation, and then build up an improved

material removal model. The experimental studies

show that the proposed improved model provides more

accurate prediction results than the traditional models,

which will be helpful for the more precise control of

polishing process by an industrial robot.
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