Effect of molten pool convection on pores and elements distribution in the process of laser cladding
-
摘要: 激光熔覆时熔池对流运动对熔覆层成分和气孔缺陷分布具有较大影响。通过在灰铸铁和45钢两种基体上进行激光熔覆NiCuFeBSi 系合金的工艺试验,对熔池的对流运动形式进行了机理分析与试验验证。结果表明,受熔池强对流运动影响,熔覆层气孔呈均匀弥散化分布趋势;且自熔覆层底部向顶部方向合金元素分布均匀,无缓慢过渡特征。根据YAG 激光光斑能量的高斯分布特征,获得了熔池对流运动的驱动力是熔池温度分布不均形成的熔池表面张力梯度。而且熔池表面张力梯度与激光能量密度,熔池温度,熔体对流运动速度是彼此密切相关的。熔池对流运动机理分析表明,热流密度越高,温度越高,表面张力梯度越大,熔体对流运动速度越大。Abstract: The molten pool convection has a great impact on elements and pores distribution during the laser cladding process. In this paper, the form of molten pool convection was investigate in terms of laser cladding NiCuFeBSi alloys on the substrate of gray cast iron and 45 steel. Results indicated that the distribution forms of pores and elements in the clad layer are uniform and dispersive due to the molten pool convection. Moreover, element distribution is also uniform without any slow transition from the bottom of clad layers to the top by means of electron probe microanalysis (EPMA). And according to the Gaussian distribution of energy in the YAG laser beams, it can be concluded that the driving force of convection is the surface tension gradient due to the non-uniform distribution of molten pool temperatures. Those of the laser thermal density, the molten pool temperature, the convective speed and the surface tension gradient are closely related with each other. It indicates that the temperature increases as the laser thermal density rising. The higher temperature is, the larger surface tension gradient will be as well as the convective speeds.
-
Key words:
- laser cladding /
- molten pool /
- convection /
- gray cast iron /
- surface tension gradient
-
[1] Dowden J M. The Theory of Laser Materials Processing[M].Dordrecht: Springer Science +Business Media B V, 2008:235-256. [2] [3] Li Zhuguo, Huang Jian, Wang Yaping, et al. High powerdiode laser cladding of Co-based alloy coating undertemperature field control [J]. Infrared and LaserEngineering, 2010, 39(2): 311-314. (in Chinese)李铸国, 黄坚, 王亚平, 等. 温度场监控下高功率半导体激光熔敷钴基合金涂层[J]. 红外与激光工程, 2010, 39(2):311-314. [4] [5] Wang Weifu, Wang Maocai. Directionally depositedmicrostructures prepared by laser cladding +electrosparkdeposition[J]. Infrared and Laser Engineering, 2010, 39(4):751-755. (in Chinese)王维夫, 王茂才. 激光+ 微弧火花复合定向沉积的显微组织研究[J]. 红外与激光工程, 2010, 39(4): 751-755. [6] [7] [8] Athony T R, Cline H E. Heat treating and melting materialwith a scanning laser or electron beam [J]. J Appl Phys,1977, 48(9): 3888. [9] [10] Dong Wenchao, Lu Shanping, Li Dianzhong, et al. Numericalsimulation of effects of the minor active-element oxygen onthe marangoni convection and the weld shape [J]. ActaMetall Sin, 2008, 44(2): 249-256. [11] [12] Xu Binshi. The theories and Technologies on SurfaceEngineering [M]. Beijing: National Defense Press, 1999:429-448. (in Chinese)徐滨士. 表面工程的理论与技术[M]. 北京: 国防工业出版社, 1999: 429-448. [13] [14] Salehi D, Brandt M. Melt pool temperature control usingLabVIEW in Nd:YAG laser blown powder cladding process[J]. Int J Adv Manuf Technol, 2006, 29(3-4): 273-278. [15] Chen Jing, Tan Hua, Huang Weidong, et al. Evolution ofmolten pool shape in the process of laser rapid forming [J].China J Lasers, 2007, 34(3): 442-446. [16] [17] Dong Shiyun, Yan Shixing, Xu Binshi et al. Study onmicrostructure and mechanical property of nicufebsi alloywith laser cladding on the substrate of gray cast irons[J]. ChinaJ Lasers, 2012, 39(12): 1203004-1-1203004-7. (in Chinese)董世运, 闫世兴, 徐滨士等. 铸铁件激光熔覆NiCuFeBSi合金组织及力学性能研究[J]. 中国激光, 2012, 39 (12):1203004-1-1203004-7. [18] [19] Marineki B. Modern Casting[M]. Washington, D C: AmericanFoundrymen's Society, 1963: 99. [20] [21] Liu Jichang, Li Lijun, Zhang Yuanzhong. Attenuation of laserpower of a focused Gaussian beam during interactionbetween a laser and powder in coaxial laser cladding [J]. JPhys D Appl Phys, 2005, 38(10): 1546. [22] [23] [24] Wu Chuansong. Thermal Process of Weld and Molten PoolCharacter [M]. Beijing: China Machine Press, 2007: 25-27.(in Chinese)武传松. 焊接热过程与熔池形态[M]. 北京: 机械工业出版社, 2007: 25-27. [25] Zhang Yongkang. Laser Processing Technology[M]. Beijing:Chemical Industry Press, 2004: 201-202. (in Chinese)张永康. 激光加工技术[M]. 北京: 化学工业出版社, 2004:201-202. [26] [27] Zuo Tiechuan. Laser Materials Processing of High StrengthAluminum Alloys [M]. Beijing: National Defense IndustryPress, 2002: 191-193. (in Chinese)左铁钏. 高强铝合金的激光加工[M]. 北京: 国防工业出版社, 2002: 191-193. [28] [29] Guan Zhenzhong. Laser Processing Manual[M]. Beijing: ChinaMetrology Publishing House, 2007: 260-264. (in Chinese)关振中. 激光加工手册[M]. 北京: 中国计量出版社, 2007:260-264. -

计量
- 文章访问数: 399
- HTML全文浏览量: 66
- PDF下载量: 201
- 被引次数: 0