留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能激光能量直接测量技术及其发展趋势

魏继锋 胡晓阳 张凯 孙利群

魏继锋, 胡晓阳, 张凯, 孙利群. 高能激光能量直接测量技术及其发展趋势[J]. 红外与激光工程, 2017, 46(7): 706004-0706004(9). doi: 10.3788/IRLA201746.0706004
引用本文: 魏继锋, 胡晓阳, 张凯, 孙利群. 高能激光能量直接测量技术及其发展趋势[J]. 红外与激光工程, 2017, 46(7): 706004-0706004(9). doi: 10.3788/IRLA201746.0706004
Wei Jifeng, Hu Xiaoyang, Zhang Kai, Sun Liqun. Technologies and development trends of directly measuring high energy laser energy[J]. Infrared and Laser Engineering, 2017, 46(7): 706004-0706004(9). doi: 10.3788/IRLA201746.0706004
Citation: Wei Jifeng, Hu Xiaoyang, Zhang Kai, Sun Liqun. Technologies and development trends of directly measuring high energy laser energy[J]. Infrared and Laser Engineering, 2017, 46(7): 706004-0706004(9). doi: 10.3788/IRLA201746.0706004

高能激光能量直接测量技术及其发展趋势

doi: 10.3788/IRLA201746.0706004
基金项目: 

国家高技术研究发展计划(2014AAxxx2027)

详细信息
    作者简介:

    魏继锋(1980-),男,副研究员,博士,主要从事高能激光参数诊断技术方面的研究。Email:wjfcom2000@163.com

    通讯作者: 孙利群(1962-),男,教授,博士生导师,主要从事光学精密计量方面的研究。Email:sunlq@pim.tsinghua.edu.cn
  • 中图分类号: O348

Technologies and development trends of directly measuring high energy laser energy

  • 摘要: 高能激光功率高、能量大,造成激光能量计容易损坏和测量不确定度增加。围绕上述问题对国内外现有的几种高能激光能量直接测量方法进行了比较和归纳,对各种技术的优点和缺点作了深入的分析,在此基础上阐述了高能激光能量直接测量技术的发展趋势。研究表明,提高热交换效率是提升高能激光能量计测量能力最高效的措施,尤其是在采用体吸收模式和强制热交换模式的情况下这种效果更加明显;消除吸收体上温度梯度对吸收体材料比热和温度传感器响应时间的影响是提高被动吸收型高能激光能量计测量准确度的关键,在水流冷却型高能激光能量计和水流直接吸收型高能激光能量计中消除水流相变的影响和控制水流温度场不均匀造成的影响则是保证温度准确测量的关键。目前各种高热交换效率和新体制的测量方法得到快速发展和应用,系统的测量能力和测量准确度大幅提高,为了适应未来长时间测量需求,能量累积型高能激光能量计逐渐被功率平衡型高能激光能量计所替代。
  • [1] Hocquet S, Penninckx D, Bordenave E, et al. FM to AM conversion in high power lasers[J]. Appl Opt, 2008, 473338-3349.
    [2] Livigni D, Cromer C, Scott T, et al. Thermal characterization of a cryogenic radiometer and comparison with a laser calorimeter[J]. Metrologia, 1998, 35:819-827.
    [3] Crespy C, Villate D, Soscia M, et al. RLCYC 75:a 2 kW electrically calibrated laser calorimeter designed for Laser Mega Joule diagnostics calibration[J]. Metrologia, 2013, 50:37-48.
    [4] Soni R K, Mandloie V K, Pote M B. Spinning cone water film power meter for high-power CO2 laser[J]. Optics Laser Technology, 2007, 39:196-201.
    [5] Wei Jifeng, Guan Youguang, Zhou Shan, et al. Online calibration methods for high energy laser energy measuring equipment[J]. Chinese Journal of Lasers, 2009, 36(9):988-992. (in Chinese)
    [6] Li Gaoping, Wang Lei, Yang Zhaojin, et al. Study on the measurement of long pulse high power laser energy[J]. Acta Photonica Sinica, 2004, 34(9):1111-1114. (in Chinese)
    [7] Wei Jifeng, Guan Youguang, Zhou Shan, et al. Research on effect to online energy measurement device for long-pulse laser by laser pulse width[J]. Chinese Journal of Lasers, 2010, 37(4):1088-1092. (in Chinese)
    [8] Wang Lei, Yang Zhaojin, Li Gaoping, et al. Research on temperature characteristics of absolute calorimetric energy meter for high energy laser[J]. J Applied Optics, 2005, 26(5):29-32. (in Chinese)
    [9] Zhao Falun, Xu Jun, Xu Yibing, et al. Temperature characteristics of an absorbing cavity in the calorimetric energy meter for high-energy laser[J]. Infrared and Laser Engineering, 2009, 38(5):825-829. (in Chinese)
    [10] Xie Rongjie, Dan Liuhua, Zai Yunfeng, et al. Development of calorimetric detector for high energy laser energy measurement[J]. Infrared and Laser Engineering, 2006, 35(S1):80-84. (in Chinese)
    [11] Wei Jifeng, Zhang Kai, Zhou Shan, et al. Research on calibration of high-energy-laser calorimeter[J]. High Power Laser and Particle Beams, 2008, 20(11):1798-1802. (in Chinese)
    [12] Su Y, Wan M. High Energy Laser System[M]. Beijing:National Defense Industry Press, 2004:210. (in Chinese)
    [13] Thomas R S. Megawatt laser calorimeter design[C]//IEEE, 1991, CH2940-5:227-231.
    [14] Wang Hui. Research of the energy loss compensation of high-energy laser energy meter[D]. Xi'an:Xi'an Technology University, 2010. (in Chinese)
    [15] Ji Yunfeng, Liu Weiping, Duan Liuhua, et al. Fast thermal balancing full absorbing HEL calorimeter[J]. Infrared and Laser Engineering, 2013, 42(2):387-391. (in Chinese)戢运峰, 刘卫平, 段刘华, 等. 快平衡全吸收式高能激光能量计[J]. 红外与激光工程, 2013, 42(2):387-391.
    [16] Yu X, Li Q, Nie L, et al. Research of the conical cavity high-energy laser energy meter energy loss compensation technique[C]//SPIE, 2008, 7155:71552R.
    [17] Steiner T D, Butts R R, Kramer M A. The airborne laser advanced concepts tested[C]//SPIE, 1998, 3381:23-29.
    [18] Lu Yaodong, Shi Hongmin, Qi Xue. Integrated sphere application in the field of powerful laser energy measurement[J]. High Power Laser and Particle Beams, 2000, 12(s0):106-108. (in Chinese)
    [19] Yu Xun, Wang Hui, Nie Liang, et al. Energy loss compensation of backscattering of high-energy laser energy meter[J]. Acta Photonica Sinica, 2009, 38(5):1052-1057. (in Chinese)
    [20] Wang Lei, Yang Zhaojin, Li G P, et al. Research of backscatter energy for cone-shaped high energy laser energy meter[J]. Journal of Astronautic Metrology and Measuremen, 2005, 25(3):59-64. (in Chinese)
    [21] Wei Jifeng, Jiang Zhixiong, Lu Fei, et al. Design of graphite-cone-absorption-cavity absolute energy meter for high energy laser[J]. Chinese Journal of Lasers, 2015, 42(2):0208006. (in Chinese)
    [22] Wei Jifeng, Lu Fei, Sun Liqun, et al. Research on temperature measurement technology of graphite-cone-absorption-cavity absolute calorimetric energy meter for high energy laser[J]. Review of Scientific Instruments, 2015, 86:025001(8pp).
    [23] Wei Jifeng, Yan Chang, Sun Liqun, et al. Electro-optical equivalent calibration technology for high-energy laser energy meters[J]. Review of Scientific Instruments, 2016, 87:045114.
    [24] Wei Jifeng, Hu Xiaoyang, Sun Liqun, et al. Technology for radiation efficiency measurement of high-power halogen tungsten lamp used in calibration of high-energy laser energy meter[J]. Appl Opt, 2015, 54(9):2289-2295.
    [25] Wei Jifeng, Lu Fei, Jiang Zhixiong, et al. Controlling technology of temperature field for absorbers of gilded-reflection-cone high energy laser energy meter[J]. High Power Laser and Particle Beams, 2015, 27(12):121001. (in Chinese)
    [26] Culoma A, Chablat J, Soscia M, et al. High power laser beam diagnostics:an application to the ETCA 25 kW CO2 laser[C]//SPIE, 1998, 1024:20-25.
    [27] Andrus Garay. Continuous wave dauteriun flouoride laser beam diagnostic system[C]//SPIE, 1988, 888:17-22.
    [28] Smith R L, Russell T W, Case W F, et al. A calorimeter for high power CW lasers[J]. IEEE Trans Instrum Measurement, 1972, IM-21(4):434-438.
    [29] Wei Jifeng, Sun Liqun, Zhang Kai. Volume absorption laser energy meter for high energy laser by water absorption[J].Applied Physics B:Laser and Optics, 2013, 110:573-578.
    [30] Wei Jifeng, Sun Liqun, Zhang Kai, et al. Heat exchange model in absorption chamber of water-direct-absorption-typed laser energy meter[J]. Optic and Laser Technology, 2015, 67:65-71.
    [31] Wei Jifeng, Sun Liqun, Zhang Kai, et al. Phase transition model of water flow irradiated by high-energy laser in a chamber[J]. Chin Phys B, 2014, 23(7):074209-1-6.
    [32] Wei Jifeng, Sun Liqun, Zhang Kai, et al. Study on the influence of the response characteristics of the temperature sensor on the measurement accuracy of a water-absorption-based high energy laser energy meter[J]. Meas Sci Technol, 2013, 24:055103.
    [33] Wei Jifeng, He Junzhang, Zhou Shan, et al. Research on calibration methods and calibration systems of water-absorption-type high energy laser energy meters[J]. High Power Laser and Particle Beams, 2014, 12(26):120201. (in Chinese)
    [34] Wei Jifeng. Research on directly measuring technology and calibration system for energy of high energy laser[D].Beijing:Tsinghua University, 2015. (in Chinese)
  • [1] 王辉华, 林龙信, 叶辛, 吕晓英.  国外新型电驱动高能激光技术现状与发展趋势 . 红外与激光工程, 2023, 52(1): 20220283-1-20220283-11. doi: 10.3788/IRLA20220283
    [2] 张俊, 宫雪非.  大口径长焦距光学检测系统强制对流方法 . 红外与激光工程, 2022, 51(12): 20220204-1-20220204-8. doi: 10.3788/IRLA20220204
    [3] 王春雨, 王聪, 牛锦川, 赵英龙, 张生杰.  航空相机光学镜头被动消热一体化设计与验证分析 . 红外与激光工程, 2021, 50(3): 20200220-1-20200220-8. doi: 10.3788/IRLA20200220
    [4] 冯亚飞, 韦承甫, 刘现魁, 任晓明, 王振华, 孟昭荣.  应用于环形激光束的低阶哈特曼波前传感器设计 . 红外与激光工程, 2021, 50(7): 20210016-1-20210016-6. doi: 10.3788/IRLA20210016
    [5] 李晓龙, 赵朝方.  激光雷达探测海洋物质垂直分布的应用及发展趋势 . 红外与激光工程, 2020, 49(S2): 20200381-20200381. doi: 10.3788/IRLA20200381
    [6] 王辉华, 林龙信, 叶辛.  高功率板条激光技术现状与发展趋势 . 红外与激光工程, 2020, 49(7): 20190456-1-20190456-8. doi: 10.3788/IRLA20190456
    [7] 邱家稳, 王强, 马继楠.  深空探测技术(特约) . 红外与激光工程, 2020, 49(5): 20201001-20201001-10. doi: 10.3788/IRLA20201001
    [8] 谭逢富, 黄志刚, 张巳龙, 秦来安, 侯再红, 高穹, 刘虎.  基于逐点扫描的探测器阵列靶标定系统 . 红外与激光工程, 2020, 49(2): 0213003-0213003. doi: 10.3788/IRLA202049.0213003
    [9] 王立, 吴奋陟, 梁潇.  我国深空探测光学敏感器技术发展与应用(特约) . 红外与激光工程, 2020, 49(5): 20201004-20201004-6. doi: 10.3788/IRLA20201004
    [10] 王兆利, 梁惊涛, 赵密广, 陈厚磊, 王娟, 卫铃佼.  机械制冷机冷却的透射式光学系统支撑结构 . 红外与激光工程, 2019, 48(2): 218006-0218006(11). doi: 10.3788/IRLA201948.0218006
    [11] 赵磊, 纪明, 王佳, 赵振海, 王虎.  万向柔性铰链连接快速反射镜的设计与仿真 . 红外与激光工程, 2019, 48(2): 218002-0218002(7). doi: 10.3788/IRLA201948.0218002
    [12] 王禹苏, 郭建增, 任晓明, 刘现魁, 赵海涛, 牛志峰, 王振华.  基于三光斑的激光束离焦量实时检测方法 . 红外与激光工程, 2019, 48(8): 805001-0805001(5). doi: 10.3788/IRLA201948.0805001
    [13] 杨勋, 徐抒岩, 李晓波, 张旭升, 马宏财.  温度梯度对大口径反射镜热稳定性公差的影响 . 红外与激光工程, 2019, 48(9): 916003-0916003(10). doi: 10.3788/IRLA201948.0916003
    [14] 李南, 乔春红, 范承玉, 杨高潮.  大能量长脉冲激光能量计吸收体温度特性 . 红外与激光工程, 2018, 47(4): 406004-0406004(6). doi: 10.3788/IRLA201847.0406004
    [15] 徐均琪, 苏俊宏, 葛锦蔓, 基玛 格拉索夫.  光学薄膜激光损伤阈值测量不确定度 . 红外与激光工程, 2017, 46(8): 806007-0806007(7). doi: 10.3788/IRLA201746.0806007
    [16] 衣小龙, 方伟, 李叶飞, 叶新, 王玉鹏.  太阳辐照度绝对辐射计的定标新方法 . 红外与激光工程, 2016, 45(9): 917001-0917001(7). doi: 10.3788/IRLA201645.0917001
    [17] 王振宝, 冯国斌, 陈绍武, 杨鹏翎, 吴勇.  全吸收旋转式高能激光能量计吸收腔设计 . 红外与激光工程, 2016, 45(12): 1217010-1217010(6). doi: 10.3788/IRLA201645.1217010
    [18] 李建忠, 黎向锋, 左敦稳, 许瑞华, 陈竹.  模拟研究离焦量对7050铝合金Al/Ti熔覆过程的影响 . 红外与激光工程, 2015, 44(4): 1126-1133.
    [19] 肖韶荣, 周洁, 赵静, 黄新.  温度对激光光斑跟踪不确定度的影响 . 红外与激光工程, 2013, 42(3): 605-610.
    [20] 戢运峰, 刘卫平, 段刘华, 姜畅, 何中敏, 徐作冬, 王飞, 王莉.  快平衡全吸收式高能激光能量计 . 红外与激光工程, 2013, 42(2): 387-391.
  • 加载中
计量
  • 文章访问数:  283
  • HTML全文浏览量:  30
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-07
  • 修回日期:  2016-12-09
  • 刊出日期:  2017-07-25

高能激光能量直接测量技术及其发展趋势

doi: 10.3788/IRLA201746.0706004
    作者简介:

    魏继锋(1980-),男,副研究员,博士,主要从事高能激光参数诊断技术方面的研究。Email:wjfcom2000@163.com

    通讯作者: 孙利群(1962-),男,教授,博士生导师,主要从事光学精密计量方面的研究。Email:sunlq@pim.tsinghua.edu.cn
基金项目:

国家高技术研究发展计划(2014AAxxx2027)

  • 中图分类号: O348

摘要: 高能激光功率高、能量大,造成激光能量计容易损坏和测量不确定度增加。围绕上述问题对国内外现有的几种高能激光能量直接测量方法进行了比较和归纳,对各种技术的优点和缺点作了深入的分析,在此基础上阐述了高能激光能量直接测量技术的发展趋势。研究表明,提高热交换效率是提升高能激光能量计测量能力最高效的措施,尤其是在采用体吸收模式和强制热交换模式的情况下这种效果更加明显;消除吸收体上温度梯度对吸收体材料比热和温度传感器响应时间的影响是提高被动吸收型高能激光能量计测量准确度的关键,在水流冷却型高能激光能量计和水流直接吸收型高能激光能量计中消除水流相变的影响和控制水流温度场不均匀造成的影响则是保证温度准确测量的关键。目前各种高热交换效率和新体制的测量方法得到快速发展和应用,系统的测量能力和测量准确度大幅提高,为了适应未来长时间测量需求,能量累积型高能激光能量计逐渐被功率平衡型高能激光能量计所替代。

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回