Volume 47 Issue 3
Apr.  2018
Turn off MathJax
Article Contents

Hu Xuan, Li Daojing, Tian He, Zhao Xufeng. Impact and correction of phase error in ladar signal on synthetic aperture imaging[J]. Infrared and Laser Engineering, 2018, 47(3): 306001-0306001(12). doi: 10.3788/IRLA201847.0306001
Citation: Hu Xuan, Li Daojing, Tian He, Zhao Xufeng. Impact and correction of phase error in ladar signal on synthetic aperture imaging[J]. Infrared and Laser Engineering, 2018, 47(3): 306001-0306001(12). doi: 10.3788/IRLA201847.0306001

Impact and correction of phase error in ladar signal on synthetic aperture imaging

doi: 10.3788/IRLA201847.0306001
  • Received Date: 2017-10-05
  • Rev Recd Date: 2017-11-03
  • Publish Date: 2018-03-25
  • Specific to synthetic aperture ladar(SAL), the impact of signal phase error on synthetic aperture imaging was analyzed. Laser signal was modeled, the impact of laser signal coherence on SAL azimuthal resolution was analyzed, one solution by delaying the local oscillator signal was proposed. The impact of nonlinear distortion in LFM signal on range resolution was analyzed. To solve the problem of the random initial phase error introduced in the process of laser LFM signal modulation and amplification, one nonlinear distortion and phase error calibration correction method based on reference channel was proposed. Experiment and simulation results are shown.
  • [1] Li Daojing, Zhang Qingjuan, Liu Bo. Key technology and implementation scheme analysis of air-borne synthetic aperture lidar[J]. Journal of Radars, 2013, 2(2):143-151. (in Chinese)李道京, 张清娟, 刘波. 机载合成孔径激光雷达关键技术和实现方案分析[J]. 雷达学报, 2013, 2(2):143-151.
    [2] Wu Jin. On the development of synthetic aperture ladar imaging[J]. Journal of Radars, 2012, 1(4):353-360. (in Chinese)吴谨. 关于合成孔径激光雷达成像研究[J]. 雷达学报, 2012, 1(4):353-360.
    [3] Guo Liang, Xing Mengdao, Zhang Long. Research on indoor experimentation of range SAL imaging system[J]. Science China E-Technological Sciences, 2009, 39(10):1678-1684. (in Chinese)郭亮, 邢孟道, 张龙. 室内距离向合成孔径激光雷达成像的实验研究[J]. 中国科学E辑:技术科学, 2009, 39(10):1678-1684.
    [4] Pu Tao, Wen Chuanhua. Principle and Adaption of Microwave Photonics[M]. Beijing:Publishing House of Electronics Industry, 2015. (in Chinese)蒲涛, 闻传花. 微波光子学原理与应用[M]. 北京:电子工业出版社, 2015.
    [5] Du Jianbo, Li Daojing, Ma Meng. Research on forming method of wide-band signal of SAL[J]. Chinese Journal of Lasers, 2015, 42(11):1114003. (in Chinese)杜剑波, 李道京, 马萌. 激光雷达宽带信号产生方法研究[J]. 中国激光, 2015, 42(11):1114003.
    [6] Du Jianbo, Li Daojing, Ma Meng. Performance analysis and image processing of phase-modulated signal on airborne synthetic aperture lidar[J]. Journal of Radars, 2014, 3(1):111-118. (in Chinese)杜剑波, 李道京, 马萌. 机载合成孔径激光雷达相位调制信号性能分析和成像处理[J]. 雷达学报, 2014, 3(1):111-118.
    [7] Yan Deke, Zhong Zhen, Sun Chuandong. Mathematical model of the laser frequency shift modulated by small signal low frequency current[J]. Infrared and Laser Engineering, 2011, 40(8):1465-1468. (in Chinese)闫得科, 钟镇, 孙传东. 小信号低频电流调制下激光频移信号模型[J]. 红外与激光工程, 2011, 40(8):1465-1468.
    [8] Su Hang. Research about phase noise test technology of continuous wave[D]. Xi'an:Xidian University, 2011. (in Chinese)苏航. 连续波信号相位噪声测试技术的研究[D]. 西安:西安电子科技大学, 2011.
    [9] An Panlong, Zhao Ruijuan, Zheng Yongqiu, et al. Linewidth rapid measurement of narrow fiber laser by spectrum analyzer[J]. Infrared and Laser Engineering, 2015, 44(3):897-900. (in Chinese)安盼龙,赵瑞娟, 郑永秋, 等. 频谱仪快速测定窄线宽激光器线宽[J]. 红外与激光工程, 2015, 44(3):897-900.
    [10] Lu Yuanfu, Xie Shiyong, Li Yan, et al. High power narrow linewidth microsecond pulse 1064 nm ring laser[J]. Optics and Precision Engineering, 2016, 24(10):35-40. (in Chinese)鲁远甫, 谢仕永, 刘艳, 等. 高功率窄线宽微秒脉冲1064 nm环形腔激光[J]. 光学精密工程, 2016, 24(10):35-40.
    [11] Li Daojing, Pan Zhouhao, Qiao Ming. Airborne Millimeter Wave InSAR Technology Based on Three Baseline Antenna[M]. Beijing:Publishing House of Science, 2015:56-57. (in Chinese)李道京, 潘舟浩, 乔明. 机载毫米波三基线InSAR技术[M]. 北京:科学出版社, 2015:56-57.
    [12] Liang Yi. Signal processing of LFMCW SAR[D]. Xi'an:Xidian University, 2009. (in Chinese)梁毅. 调频连续波SAR信号处理[D]. 西安:西安电子科技大学, 2009.
    [13] Yu Wen, Zhao Siwei, Song Xiaoquan. A FS imaging method for chirp signal correcting in SAL[J]. Laser and Optoelectronics Progress, 2013, 50(7):072801. (in Chinese)于雯, 赵思伟, 宋小全. 一种适用于合成孔径激光雷达非线性啁啾校正的频率变标成像方法[J]. 激光与光电子学进展, 2013, 50(7):072801.
    [14] Hu Xuan, Li Daojing, Zhou Jianwei. Image processing of SAL based on low sampling rate digital dechirp[J]. Journal of University of Chinese Academy of Sciences, 2016, 33(5):664-668. (in Chinese)胡烜, 李道京, 周建卫. 基于低采样率数字去斜的合成孔径激光雷达成像处理[J]. 中国科学院大学学报, 2016, 33(5):664-668.
    [15] Pan Zhouhao, Liu Bo, Li Daojing. System error correcting and signal analysis of micro-wave InSAR with three baseline antennas[J]. Journal of Electronics and Information Technology, 2011, 33(10):2464-2470. (in Chinese)潘舟浩, 刘波, 李道京. 毫米波三基线InSAR系统误差校正和信号分析[J]. 电子与信息学报, 2011, 33(10):2464-2470.
    [16] Krause B W, Buck J, Ryan C, et al. Synthetic aperture lidar flight demonstration[C]//OSA/CLEO/IQEC, 2011.
    [17] Li Daojing, Du Jianbo, Ma Meng, et al. The system analysis of spaceborne synthetic aperture ladar[J]. Infrared and Laser Engineering, 2016, 45(11):269-276. (in Chinese)李道京, 杜剑波, 马萌, 等. 天基合成孔径激光雷达系统分析[J]. 红外与激光工程, 2016, 45(11):269-276.
    [18] Quegan S. Spotlight Synthetic Aperture Radar Signal Processing Algorithms[M]. Cai Yongjie, translated. Nanjing:Nanjing Research Institute of Electronic Technology, 1997:158-162. (in Chinese) Quegan S. 聚束照射合成孔径雷达的信号处理算法[M]. 才永杰, 译. 南京:南京电子技术研究所, 1997:158-162.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(379) PDF downloads(87) Cited by()

Related
Proportional views

Impact and correction of phase error in ladar signal on synthetic aperture imaging

doi: 10.3788/IRLA201847.0306001
  • 1. Science and Technology on Microwave Imaging Laboratory,Institute of Electronics,Chinese Academy of Sciences,Beijing 100190,China;
  • 2. University of Chinese Academy of Sciences,Beijing 100049,China

Abstract: Specific to synthetic aperture ladar(SAL), the impact of signal phase error on synthetic aperture imaging was analyzed. Laser signal was modeled, the impact of laser signal coherence on SAL azimuthal resolution was analyzed, one solution by delaying the local oscillator signal was proposed. The impact of nonlinear distortion in LFM signal on range resolution was analyzed. To solve the problem of the random initial phase error introduced in the process of laser LFM signal modulation and amplification, one nonlinear distortion and phase error calibration correction method based on reference channel was proposed. Experiment and simulation results are shown.

Reference (18)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return