Volume 49 Issue 11
Nov.  2020
Turn off MathJax
Article Contents

Yang Yinhui, Zheng Yijun, Zhu Ziren, Sun Ke, Tang Huajiang, Tan Rongqing, Su Xinjun. Development of solid-state high voltage switch for pulsed gas laser[J]. Infrared and Laser Engineering, 2020, 49(11): 20200045. doi: 10.3788/IRLA20200045
Citation: Yang Yinhui, Zheng Yijun, Zhu Ziren, Sun Ke, Tang Huajiang, Tan Rongqing, Su Xinjun. Development of solid-state high voltage switch for pulsed gas laser[J]. Infrared and Laser Engineering, 2020, 49(11): 20200045. doi: 10.3788/IRLA20200045

Development of solid-state high voltage switch for pulsed gas laser

doi: 10.3788/IRLA20200045
  • Received Date: 2020-01-06
  • Rev Recd Date: 2020-09-10
  • Available Online: 2020-06-22
  • Publish Date: 2020-11-25
  • A solid-state high voltage switch for pulsed gas laser based on magnetic pulse compression system was developed in the experiment. The output efficiency of the magnetic compression switch was maximized by adjusting the reset current and load resistance. After being compressed by two-stage magnetic switch, the pulse width was about 5% of the original. The rising time after compression was about 180 ns, and the amplitude was about 16 kV. The first-stage magnetic compression efficiency was 89.2%, the second-stage magnetic compression efficiency was 97.7%, and the total compression efficiency reached 87.2%. After receiving the laser, the measured output laser pulse energy was about 20 mJ, the output laser pulse half-height and width were about 85 ns.
  • [1] 盛军. 准分子激光器快放电电路研究[D]. 武汉: 华中科技大学, 2011.

    Sheng Jun. Study on fast discharge circuit of excimer laser [D]. Wuhan: Huazhong University of Science and Technology, 2011. (in Chinese)
    [2] 万枫, 李孜. 多级磁压缩脉冲电源[J]. 电源技术, 2011, 36(1): 118-120.

    Wan Feng, Li Zi. Multistage magnetic compression pulse power supply [J]. Power Technology, 2011, 36(1): 118-120. (in Chinese
    [3] Perkins H A. Magnetic switching in materials [J]. IEEE Transactions on Parts Materials and Packaging, 1969, 4(4): 102-109.
    [4] Vezzu G, Lopez J L, Freilich A, et al. Optimization of large-scale ozone generators [J]. IEEE Transactions on Plasma Science, 2009, 37(6): 890-896. doi:  10.1109/TPS.2009.2015452
    [5] Katsumi Midorikawa, Hidekazu Hatanaka, Minoru Obarat S, et al. A 1 kHz repetition-rate 500 W CO2, TEA laser employing solid-state pulse power conditioning [J]. Meas Sci Technoi, 1993, 4: 388-391. doi:  10.1088/0957-0233/4/3/020
    [6] 张东东, 严萍, 王珏, 潘如政, 等. 磁脉冲压缩系统实验研究[J]. 电气应用, 2008, 27(10): 79-81.

    Zhang Dongdong, Yan Ping, Wang Jue, et al. Experimental research on magnetic pulse compression system [J]. Journal of Electrical Applications, 2008, 27(10): 79-81. (in Chinese
    [7] 安然, 谭荣清, 刘世明, 等. 全固态激励小型TEA CO2激光器的研制[J]. 强激光与粒子束, 2010, 22(5): 948-952.

    An Ran, Tan Rongqing, Liu Shiming, et al. Development of all solid state excited miniature TEA CO2 laser [J]. High Power Laser and Particle Beams, 2010, 22(5): 948-952. (in Chinese
    [8] 朱雨翔, 兰生. 基于磁开关的低频高压脉冲电源的设计与仿真[J]. 电气技术, 2016(1): 42-44. doi:  10.3969/j.issn.1673-3800.2016.01.003

    Zhu Yuxiang, Lan Sheng. Design and simulation of low-frequency high-voltage pulse power supply based on magnetic switch [J]. Electrical Technology, 2016(1): 42-44. (in Chinese doi:  10.3969/j.issn.1673-3800.2016.01.003
    [9] 张东东, 严萍, 王珏. 磁脉冲压缩系统的仿真研究[J]. 强激光与粒子束, 2008, 20(3): 497-500.

    Zhang Dongdong, Yan Ping, Wang Jue. Simulation of magnetic pulse compression system [J]. High Power Laser and Particle Beams, 2008, 20(3): 497-500. (in Chinese
    [10] 张东东, 严萍, 王珏. 磁脉冲压缩系统元件参数及电路仿真[J]. 高电压技术, 2009, 45(1): 19-20.

    Zhang Dongdong, Yan Ping, Wang Jue. Component parameters and circuit simulation of magnetic pulse compression system [J]. High Voltage Technology, 2009, 45(1): 19-20. (in Chinese
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)  / Tables(2)

Article Metrics

Article views(408) PDF downloads(21) Cited by()

Related
Proportional views

Development of solid-state high voltage switch for pulsed gas laser

doi: 10.3788/IRLA20200045
  • 1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
  • 2. School of Electronic, Electrical and Communication Engineering, Chinese Academy of Sciences, Beijing 100049, China
  • 3. Institute of Physics and Chemistry Engineering, Nuclear Industry, Tianjin 300180, China

Abstract: A solid-state high voltage switch for pulsed gas laser based on magnetic pulse compression system was developed in the experiment. The output efficiency of the magnetic compression switch was maximized by adjusting the reset current and load resistance. After being compressed by two-stage magnetic switch, the pulse width was about 5% of the original. The rising time after compression was about 180 ns, and the amplitude was about 16 kV. The first-stage magnetic compression efficiency was 89.2%, the second-stage magnetic compression efficiency was 97.7%, and the total compression efficiency reached 87.2%. After receiving the laser, the measured output laser pulse energy was about 20 mJ, the output laser pulse half-height and width were about 85 ns.

  • 高压高重复频率放电开关作为横向激励大气压二氧化碳(TEA CO2)激光器、准分子激光器等需要高压脉冲放电激励的气体激光器的关键器件,是影响激光器使用寿命和可靠性的主要因素之一。常用的放电开关以气体放电开关为主,其具有开关速度快,工作电压高等特点,但制造工艺难度较高和开关机制等原因,导致器件性能差异性较大,使用寿命偏短。自1980年代起,以磁开关为代表的固态开关开始被用于脉冲功率技术领域[1],磁开关的使用可以进一步提升开关效率,降低开关损耗,延长开关寿命,有望成为替换气体放电开关的关键器件[2]

    1968年,H. A. Perkins从磁性材料的磁滞回线B-H这一特征参数出发,对磁开关进行了理论上的分析,奠定了磁开关的理论基础[3-4]。1992年,Katsumi Midorikawa等人采用两级磁压缩电路设计了输出为1 kH,500 W的固态开关,其放电电压为15.5 kV,磁压缩电路效率为65%[5]

    2008年,中国科学院电工研究所张东东等人采用两级磁压缩电路并经过两次升压后输出电压幅值为35 kV,上升时间为20 ns[6]。2010年,安然等人设计了两级磁压缩电路,其输出电压为22 kV,两级磁压缩电路总效率为83%[7]。2016年,朱雨翔等人设计了三级磁脉冲压缩电路,输出脉冲峰值10~30 kV可调,重复频率最高可以达到100 Hz[8]

    结合国内外近年来磁压缩开关的发展发现,磁开关的应用范围越来越广,技术也更加成熟,但是其压缩效率却没有得到明显的提升,尤其是应用于高重频时,如果效率较低则损耗会更加明显,产生巨大热量不利于电路的正常运行。此次实验以提升磁脉冲压缩效率为目标展开实验研究,最终采用了两级磁压缩的方式实现了脉冲上升沿从4 μs到180 ns的压缩效果,并且提高了压缩系统的效率,整体效率达到87.2%,其中单级效率最高达到97.7%。相比国内外压缩效率均有提升。最后将该系统应用于CO2激光器时成功实现辉光放电。

  • 磁开关设计的核心是软磁材料的磁感应强度变化的特性[9-10]。在磁场中,软磁材料的磁感应强度与磁场强度的关系可用磁滞回线来表示,如图1所示。曲线上每个点的斜率表示磁芯的磁导率即$\mu = {{{\rm{d}}B} / {{\rm{d}}H}}$$B - H$磁滞回线的面积表示经历一个周期过程后铁磁体损耗的能量。通常用矩形比${R_{\rm{s}}}$表示磁性材料的好坏,矩形比越大越好。如图1所示磁滞回线上的点${B_{\rm{s}}}$${B_{\rm{r}}}$表示为饱和磁感应强度和剩余磁感应强度;${H_{\rm{c}}}$${H_{\rm{s}}}$表示矫顽磁场强度和饱和时的磁场强度;$\Delta B$表示磁通量变化量的最大值。

    Figure 1.  Hysteresis loop

    从图1中可以看出磁场强度大于${H_{\rm{s}}}$后,磁导率急剧减小,因此实现了磁开关从高感抗到低感抗的跳变,处于高感抗时电路相当于断路的状态,处于低感抗时电路相当于导通状态。根据磁性材料的这个特性把它当作具有快速开启和关断功能的开关。设计时磁芯两端的电压需要满足伏秒积平衡方程式:

    式中:${U_{{\rm{max}}}}(t)$为磁开关两端所加的最大电压值;τ为磁芯达到饱和所需要的时间;α为磁芯叠片系数;N为磁芯绕组匝数;${A_{\rm{m}}}$为磁开关磁芯有效截面积。

  • 首先,此次实验研究目标为研制一个以磁开关为基础的全固态高压开关,使得该固态开关可以应用于激光器中实现辉光放电的要求,即输出电压幅值在15~30 kV之间,且脉冲上升时间小于200 ns。其次,通过调节负载电阻,绕组匝数以及复位电流的大小等相关参数实现磁开关效率的提升。

  • 磁芯的好坏直接影响着磁开关的性能,因此磁芯材料的选择至关重要。磁开关所需的磁芯材料应满足初始磁导率高,矩形比高,饱和磁通密度大,高频特性好等条件。初始磁导率高的磁芯可以有效防止漏电压的产生,是提升系统效率的关键,较高矩形比的磁芯开关速度快、预脉冲电压低,饱和磁通密度大的磁芯$\Delta B$大,根据公式(1)可知有益于减小绕组匝数或减小磁芯体积。

    目前技术较为成熟的磁性材料主要有硅钢片、坡莫合金、铁氧体和铁基非晶材料四种。硅钢片应用于高频时损耗很大,只适用于低频,坡莫合金虽然具有较高的饱和磁感应强度,但是其材料目前在国内难以加工,国外对这种非常规磁性材料的出口也限制严格。铁氧体磁芯虽然高频损耗较低,但是其饱和磁感应强度太低,会导致设计时总体积增大。铁基非晶合金性能上相似,高频损耗较低,具有较高的饱和磁感应强度,且初始磁导率较大。

    因此实验所选择的磁芯材料为铁基非晶材料。其参数如表1所示。

    ParametersValue
    Thickness of the strip/μm≈30
    Insulating medium/μm0.6-1
    Lamination coefficient>0.9
    Bs/T>1.5
    Br/T>1.3
    Hc/A·m−1<4
    Permeability μ>2.5×105
    Resistivity/μΩ·cm≈137
    Oss/W·kg−1<0.3
    Tc/oC410

    Table 1.  Core performance parameters

  • 单级磁脉冲压缩网络电路如图2所示,其中${C_0}$为初始储能电容,假设在初始状态时${C_0}$电容两端的电压为${U_0}$${C_1}$${C_2}$两端电压均为0 V。其中${C_0} - {L_0} - {C_1}$构成谐振回路,在t=0时开关S闭合,${C_0}$中的能量将谐振传输至${C_1}$,如图3所示,随着电容${C_1}$两端电压的逐渐升高,伏秒积也在逐渐增加,在此传输过程中磁开关${\rm{MS}}$一直处于非饱和状态。假设经过${t_0}$时间,此时${\rm{MS}}$刚好达到饱和状态且${C_0}$中的能量完全谐振传输至${C_1}$,使得${C_1}$两端的电压为${U_1}$。饱和时的电感值${L_{\rm{s}}}$远小于${L_0}$(假设未饱和时电感量用符号${L_{\rm{u}}}$表示,饱和时电感量用符号${L_{\rm{s}}}$表示),${\rm{MS}}$瞬间处于导通状态,能量通过${\rm{MS}}$经时间${t_1} - {t_0}$传输至${C_2}$,完成一级压缩。一级磁压缩后的压缩比为:

    Figure 2.  Single-stage magnetic pulse compression circuit

    Figure 3.  Voltage waveform at both ends of capacitor C1 and C2 during charging and discharging

    通过上述分析可知,在设计时可以根据回路中能量传输时间计算公式

    并结合伏秒积公式(1),最后确定采用的磁芯的截面积${A_{\rm{m}}}$为1 500 mm2,内径${R_0}$为50 mm,外径${R_1}$为80 mm,高度$h$为50 mm,绕组匝数$N$为20。图4为磁开关磁芯截面示意图。

    经计算可知只需两级磁压缩输出电压脉冲就能压缩到200 ns以内。实验中一二两级磁芯均采用铁基非晶带材作为磁芯,磁芯参数如表1所示。实验原理与所采用公式与一级磁压缩相同,在上述基础上经计算可知第二级磁压缩磁芯具体参数为:磁芯的截面积${A_{\rm{m}}}$为750 mm2,内径${R_0}$为50 mm,外径${R_1}$为80 mm,高度$h$为25 mm,绕组匝数$N$为6。

    Figure 4.  Schematic diagram of magnetic core section of magnetic switch

  • 为增加磁开关在工作时的稳定性,以及在重频条件下使磁开关能够快速恢复到初始状态,设计中给磁开关添加了复位电路。采用的复位方法是外加直流电源,复位电路中流过复位绕组的直流电流可以提供一个反向磁场,使磁芯的工作点可以回到初始的负向饱和区域。图5为带有复位电路的两级磁压缩电路,为了保护复位直流电源的安全,增加了保护电阻${R_1}$,其中电感${L_1}$以及电容${C_4}$用来吸收复位电路中的瞬态高压。在复位电流满足公式

    Figure 5.  Two-stage magnetic pulse compression circuit

    时,磁芯可以得到复位,其中${r_a}$为磁芯平均半径;${H_{\rm{s}}}$是负向饱和时的磁场强度;${N_{\rm{r}}}$是复位一端的绕组匝数。

    根据复位电流计算公式可以分别计算出,在复位绕组均为2匝时两级磁开关复位电流近似为${I_{{\rm{r}}1}} \approx 4.55『\rm{A}』,\;{I_{{\rm{r}}2}} \approx 1.60{\rm{A}}$

  • 图5所示为两级磁脉冲压缩电路原理图。说明:此节所列所有波形图中横坐标均只代表刻度,用以表示脉冲上升时间的变化,坐标0,不表示0时刻开始放电。纵坐标只表示波形的幅值。在不接第二级磁开关时,采用高压探头及示波器测量图2${C_1}$${C_2}$电压分别得到如图6(a)图6(b)所示的实验结果,6(a)为未加磁压缩时的脉冲波形图,6(b)为加一级磁压缩后的脉冲波形图。因一级压缩后脉宽依旧过宽不能达到激光器放电的要求,因此负载采用300 Ω无感电阻。由图6可知,一级磁脉冲压缩网络的输入端${C_1}$两端的电压约为18 kV,上升时间约为4 μs。由图6(b)可知,经过一级磁压缩后${C_2}$两端电压约为17 kV,上升时间约为400 ns。第一级磁开关能量传输效率为89.2%。对比图6(a)和图6(b)可以明显看出,经过一级磁压缩后脉冲宽度明显减小,脉冲上升时间约压缩为原来的1/10。

    Figure 6.  Comparison of output voltage between uncompressed and compressed

    图6(c)所示为第二级压缩后输出电压脉冲波形,从图中可以看出电压脉冲上升时间约为180 ns,幅值约为16.5 kV。第二级磁开关的能量传输效率为约94.2%。因此两级磁开关的总效率达到87.2%。

    表2为改变负载电阻阻值后,输出电压幅值及脉冲上升时间对比,图7为不同阻值时输出电压波形图。由表2结合图7可知,当负载电阻较小时,不会产生预脉冲且输出电压较低,原因为,部分预脉冲电压在磁开关导通之前直接消耗在负载电阻之上不能形成累积,因而造成较大损失,当负载电阻阻值大于等于300 Ω时输出电压幅值基本趋于稳定。图7(c)为空载时输出电压波形,可以看到预脉冲较大达到6 kV,但是电压幅值达到最高,损耗最小。因为实际放电电路中需要负载电阻在放电结束后释放残余电流,所以电阻必不可少,电阻又不宜过大,因此电路中电阻选择300 Ω。因为负载电阻均采用无感电阻,所以阻值大小对输出脉冲的上升时间几乎没有影响。

    Resistance valueAmplitude of output voltage/kVPulse rise time/ns
    0 Ω16.7180
    50 Ω10.7 180
    100 Ω13.3 180
    200 Ω14.3 180
    250 Ω15.3 180
    300 Ω16.5 180
    500 Ω16.5 180
    1 kΩ16.5 180
    2 kΩ16.5 180

    Table 2.  Relation between load resistance and output voltage

    Figure 7.  Output voltage waveform of different resistance values

    图8为未加复位电路时一级磁压缩后输出的电压波形,从图中可以看出输出电压幅值较低,且输出不稳定。对比图7(c)可知复位电路对磁压缩电路起着很重要的作用。

    Figure 8.  Output voltage waveform without reset

    综上所述,经过对于负载电阻以及复位电路的调节,使得磁脉冲压缩电路的效率达到了最大值87.2%。

  • 在上述实验基础上,在第二级压缩后接激光器作为负载,并联一个阻值为300 Ω的无感电阻用以减小放电之后的电压振荡。采用高压探头结合示波器测量得到放电时激光器两端的电压及电流波形图如图9所示,从图9中可以看出激光器两端的电压幅值约为16 kV,上升时间约为180 ns。电流幅值约为1.9 kA,电流上升时间约为160 ns。

    Figure 9.  Voltage and current waveforms of laser discharge

    激光器输出激光相关参数如图10所示,图10(a)所示为用热像仪检测到的激光器的输出光斑,光斑直径约为6 mm。从图中可以看出光斑温度最高大于60 ℃,光斑周围温度约为30 ℃。图10(b)为激光器输出激光的脉冲波形图,其中半峰值脉宽约为85 ns,峰值功率约为0.24 MW。图10(c)为使激光器连续工作5 min后测得的输出能量曲线,从图10中可知输出能量可以稳定在20 mJ,激光器效率约为3.9%。

    Figure 10.  Output laser correlation parameter diagram

  • 综上所述,通过两级磁脉冲压缩电路,实现了脉冲气体激光器用全固态高压开关的研制,提高了磁脉冲压缩电路的效率,两级压缩总效率达到87.2%,压缩率达到了20,其中单级磁脉冲压缩电路的效率最大达到了97.7%,并得出以下结论:

    (1)磁压缩电路对复位电流的大小非常敏感,采用合适大小的复位电流既能提升电路稳定性又有利于提高电路的效率。

    (2)实际实验电路中存在的附加电感对磁压缩电路也有一定的影响,尤其对于负载电阻,若采用无感电阻则可以大大减小电路中的电感。

    下一步的工作计划是研究紧凑型,高重频的全固态开关,可以选择采用初始磁导率较高,磁通密度变化较大的磁芯,这样有利于减小磁芯体积,同时此次电路的效率的提升也为高重频实验奠定了基础。

Reference (10)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return